Skip to main content
Log in

Structures of IV group elements and solid phases of water

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures of solid phases of water and IV(b) group elements of the periodic table (carbon, silicon, germanium, and tin) are compared. Both water and mentioned elements are characterized by high polymorphism. All mentioned elements and ice have a modification with a diamond structure. For all substances considered, except tin, modifications with the structure of a hexagonal analogue of diamond (lonsdaleite) have been known. The modification with the β-Sn structure has not been known only for ice and carbon. One of the germanium modifications is isostructural to ice III. Tin has a modification with the α-Fe structure. The same structure is observed for ices VII, VIII, and X. Both water and IVb group elements can form clathrate compounds with cavities in the form of Allen’s polyhedra. In water clathrates these cavities contain noble gas atoms (Ar, Kr, Xe) and various molecules. Clathrates of IVb group elements contain metal atoms as well as noble gas atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Zheligovskaya and G. G. Malenkov, Usp. Khim., 75, No. 1, 64–85 (2006).

    Article  Google Scholar 

  2. G. Malenkov, J. Phys. Condens. Matter., 21, No. 28, 283101 (2009).

    Article  Google Scholar 

  3. J. Crain, G. J. Ackland, and S. J. Clark, Rep. Prog. Phys., 58, 705–754 (1995).

    Article  CAS  Google Scholar 

  4. M. I. McMahon and R. J. Nelmes, Phys. Status Solidi, 198, 389–402 (1996).

    Article  CAS  Google Scholar 

  5. V. I. Kosyakov, J. Struct. Chem., 44, No. 1, 137–145 (2003).

    Article  CAS  Google Scholar 

  6. E. A. Zheligovskaya, J. Struct. Chem., 45, No. 6, 988–992 (2004).

    Article  CAS  Google Scholar 

  7. C. A. Perrotoni and J. A. H. da Jornada, J. Phys.: Condens. Matter, 13, 5981–5998 (2001).

    Google Scholar 

  8. D. Connetable, Phys. Pev. B, 82, No. 7, 075209 (2010).

    Google Scholar 

  9. F. Colonna, Solid State Commun., 152, No. 3, 180–184 (2012).

    Article  CAS  Google Scholar 

  10. S. Chan Kwai, M. A. Miller, W. Liang, et al., Mater. Res. Lett., 2, No. 2, 70–75 (2013).

    Article  Google Scholar 

  11. G. A. Jeffrey, in: Inclusion Compounds, J. L. Atwood, J. E. D. Davies, and D. D. McNicol (eds.), vol. 1., Academic Press, London (1984), pp. 135–150.

  12. Russ. Chem. J., 46, No. 3 (2003).

  13. S. Bobev and S. C. Sevov, J. Solid State Chem., 153, No. 1, 92–105 (2000).

  14. A. J. Kartunin and T. F. Fässler, Chemistry, 20, No. 22, 6693–6698 (2014).

  15. F. Liebau, in: The Physics and Technology of Amorphous SiO2, R. A. B. Devine (ed.), Plenum Press, New York, London (1988), pp. 15–35.

  16. G. G. Malenkov, J. Struct. Chem., 3, No. 2, 206–226 (1962).

    Article  Google Scholar 

  17. S. X. Liu, M. D. Welch, and J. Klinowski, J. Phys. Chem. B, 101, No. 15, 2811–2814 (1997).

    Article  CAS  Google Scholar 

  18. G. J. Ackland, Phys. Status Solidi B, 223, No. 2, 361–368 (2001).

    Article  CAS  Google Scholar 

  19. A. M. Sladkov, Carbine–the Third Carbon Allotrope [in Russian], Yu. N. Bubnov (ed.), Nauka, Moscow (2003).

  20. M. P. Grunbach and R. M. Martin, Solid State Commun., 100, No. 2, 61–65 (1996).

    Article  Google Scholar 

  21. J. S. Kasper and S. M. Richards, Acta Crystallogr., 17, 752–755 (1964).

    Article  CAS  Google Scholar 

  22. C. G. Salzmann, P. G. Radaelli, E. Mayer, and J. L. Finney, Phys. Rev. Lett., 103, 105701 (2009).

    Article  Google Scholar 

  23. B. R. Wu, Phys. Rev. B, 61, 5–8 (2000).

    Article  CAS  Google Scholar 

  24. M. Hebbache, M. Mattesini, and J. Szeftel, Phys. Rev. A, 63, 205201-1-205201-6 (2001).

    Google Scholar 

  25. M. I. McMahon and R. J. Nelmes, Phys. Rev. B, 47, No. 13, 8337–8340 (1993).

    Article  CAS  Google Scholar 

  26. T. N. Kolobyanina, Usp. Fiz. Nauk, 172, No. 12, 1361–1369 (2002).

    Article  Google Scholar 

  27. J. Z. Hu and I. L. Spain, Solid State Commun., 51, No. 5, 263–266 (1984).

    Article  CAS  Google Scholar 

  28. M. Hanfland, U. Schwarz, K. Syassen, and K. Takemura, Phys. Rev. Lett., 82, No. 6, 1197–1200 (1999).

    Article  CAS  Google Scholar 

  29. N. E. Christensen, D. L. Novikov, and M. Methfessel, Solid State Commun., 110, 615–619 (1999).

    Article  CAS  Google Scholar 

  30. Y. X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, Solid State Commun., 59, No. 10, 679–682 (1986).

    Article  CAS  Google Scholar 

  31. X. Yan, D. Tan, X. Ren, et al., Appl. Phys. Lett., 106, 171902 (2015).

    Article  Google Scholar 

  32. K. Takemura, U. Schwarz, K. Syassen, M. Hanfland, N. E. Christensen, D. L. Novikov, and I. Loa, Phys. Rev. B, 62, No. 16, 10603–10606 (2000).

    Article  Google Scholar 

  33. R. Ahuja and B. Johasson, J. Appl. Phys., 89, No. 5, 2547–2549 (2001).

  34. S. Desgreniers, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B, 39, No. 14, 10359–10361 (1989).

    Article  CAS  Google Scholar 

  35. C. Mabire and P.-L. Hereil, J. Phys. IV, 10, 749–754 (2000).

  36. P. G. Debenedetti, J. Phys.: Condens. Matter, 15, R1669–R1726 (2003).

  37. C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, B. Tomberti, P. A. Egelstaff, and J. Neuefeind, Science, 297, 1320–1323 (2002).

    Article  CAS  Google Scholar 

  38. New Kinds of Phase Transitions: Transformations in Disordered Substances, V. V. Brazhkin, S. V. Buldyrev, V. N. Ryzhov, and H. E. Stanley (eds.), NATO Sci. Ser., II, vol. 81, Kluwer, Dordrecht (2002).

  39. O. Mishima, L. D. Calvert, and E. Whalley, Nature, 314, 76–78 (1985).

    Article  CAS  Google Scholar 

  40. V. V. Brazhkin, A. G. Lyapin, O. V. Stalgorodova, E. L. Gromnotskaya, S. V. Popova, and O. B. Tsiok, J. Non-Cryst. Solids, 212, 49–54 (1999).

    Article  Google Scholar 

  41. M. Durandurdu and D. A. Drabold, Phys. Rev. B, 64, 014101-1-014101-7 (2001).

    Article  Google Scholar 

  42. M. Durandurdu and D. A. Drabold, Phys. Rev. B, 66, No. 4, 1201 (2002).

    Google Scholar 

  43. J. S. Williams, B. Haber, S. Desmukh, et al., Phys. Status Solidi RRL, 7, No. 5, 355–359 (2013).

    Article  CAS  Google Scholar 

  44. J. Lipkowski, Annu. Rep. Prog. Chem., Sect. C, 92, 307–338 (1995).

    Article  Google Scholar 

  45. Yu. A. Dyadin, K. A. Udachin, and I. V. Bondaryuk, Inclusion Compounds [in Russian], Izd. Novosibirsk Univ., Novosibirsk (1988).

    Google Scholar 

  46. D. W. Davidson, in: Water: A Comrehensive Treatise, F. Franks (ed.), vol. 2, Plenum Press, N. Y. (1973), pp. 115–234.

  47. Yu. A. Dyadin and K. A. Udachin, J. Struct. Chem., 28, No. 3, 394–432 (1987).

    Article  Google Scholar 

  48. M. D. Max (ed.), Natural Gas Hydrates in Oceanic and Permafrost Environments, Kluwer Academic Publishers, Dordrecht, Boston, London (2000).

    Google Scholar 

  49. O. Mousis, D. Gautier, and D. Bockeleemorvan, Icarus, 156, No. 1, 162–175 (2002).

    Article  CAS  Google Scholar 

  50. J. P. Devlin, J. Geophys. Res.: Planets, 106, No. E12, 33333–33349 (2001).

    Article  CAS  Google Scholar 

  51. G. G. Malenkov and E. A. Zheligovskaya, J. Inclusion Phenom. Macrocyclic Chem., 48, No. 1, 45–54 (2004).

    Article  CAS  Google Scholar 

  52. G. G. Malenkov, J. Struct. Chem., 54, Suppl. 2, 252–261 (2013).

    Article  CAS  Google Scholar 

  53. H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, and L. Haming, J. Solid State Chem., 151, No. 1, 117–121 (2000).

    Article  CAS  Google Scholar 

  54. T. Takabatake, in: Thermoelectric Nanomaterials. Materials Design and Application, K. Kumoto and T. Mori (eds.) (2013), pp. 33–49.

  55. G. K. Ramachandra, P. F. Mcmillan, S. K. Deb, M. Somayazulu, J. Gryko, J. J. Dong, and O. F. Sankey, J. Phys.: Condens. Matter, 12, No. 17, 4013–4020 (2000).

    Google Scholar 

  56. G. S. Nolas and C. A. Kendziora, Phys. Rev. B, 62, No. 11, 7157–7161 (2000).

    Article  CAS  Google Scholar 

  57. F. Chen, K. L. Stokes, and G. S. Nolas, J. Phys. Chem. Solids, 63, 827–832 (2002).

    Article  CAS  Google Scholar 

  58. S. Yamanaka, E. Enishi, H. Fukuoka, and M. Yasukawa, Inorg. Chem., 39, No. 1, 56–58 (2000).

    Article  CAS  Google Scholar 

  59. M. Schäfer and S. Bobev, Inorganics, 2, No. 2, 79–95 (2014).

    Article  Google Scholar 

  60. M. Schäfer and S. Bobev, JACS, 135, No. 5, 1696–1699 (2013).

  61. M. Christensen, S. Johnsen, and B. B. Iversen, Dalton Trans., 39, 978–992 (2010).

    Article  CAS  Google Scholar 

  62. J.-H. Kim, N. L. Okamoto, K. Kishida, et al., Acta Mater., 54, No. 8, 2057–2062 (2006).

    Article  CAS  Google Scholar 

  63. S.-K. Deng, D.-C. Li, L.-X. Shen, et al., Chin. Phys. B, 21, No. 1, 017401-1-017401-5 (2012).

    Article  Google Scholar 

  64. P. Norouzzadeh, J. S. Krasinski, C. W. Myles, and D. Vashaee, Phys. Chem. Chem. Phys., 17, No. 14, 8850–9 (2015).

    Article  CAS  Google Scholar 

  65. S. Bobev and C. Sevov, JACS, 123, 3389/3390 (2001).

    Article  Google Scholar 

  66. A. Falenty, T. C. Hansen, and W. F. Kuhs, Nature, 516, 231–233 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Malenkov.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 4, pp. 831-842, May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malenkov, G.G. Structures of IV group elements and solid phases of water. J Struct Chem 57, 793–804 (2016). https://doi.org/10.1134/S0022476616040247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616040247

Keywords

Navigation