Skip to main content
Log in

Structure and photoluminescence properties of TiO2 nanoparticles synthesized from a novel luminescent nano-titanium complex

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new titanium complex [Ti(Me–Q)2(Cl)2] (1) is prepared by reacting titanium tetrachloride with 2-methyl-8-hydroxyquinoline in a fast and facile process. The complex is fully characterized based on its 1H and 13C NMR, IR, and UV spectra and elemental analysis. The prepared nanostructured compound is synthesized by the sonochemical method. This new nanostructure is characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), IR spectroscopy, and elemental analysis. Thermal stability of single crystalline and nanosize samples of the prepared compound is studied by thermal gravimetric (TG) and differential thermal analysis (DTA). The prepared complexes both bulk and nanosized are utilized as a precursor for the preparation of TiO2 nanoparticles by direct thermal decomposition at 600°C in air. The morphology and size of TiO2 nanoparticles are determined by SEM, powder XRD, and IR spectroscopy and the results show that the TiO2 nanoparticle size depends on the initial particle size of 1. Photoluminescence (PL) properties of the nanostructured and crystalline bulk prepared complex and their TiO2 nanoparticle cores are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shinar, Organic Light-Emitting Devices, Springer, New York (2003).

    Google Scholar 

  2. R. D. Miller and E. A. Chandross, Chem. Rev., 110, 1/2 (2010).

    Google Scholar 

  3. N. Koch, Chem. Phys. Chem., 8, 1438–1455 (2007).

    CAS  Google Scholar 

  4. R. H. Holm and M. J. O’Connor, Prog. Inorg. Chem., 14, 241–401(1971).

    Article  CAS  Google Scholar 

  5. A. D. Garnovskii, A. L. Nivorozhkin, and V. I. Minkin, Coord. Chem. Rev., 126, 1–69 (1993).

    Article  CAS  Google Scholar 

  6. Y. Qin, C. Pagba, P. Piotrowiak, and F. Jakle, J. Am. Chem. Soc., 126, 7015–7018 (2004).

    Article  CAS  Google Scholar 

  7. M. Brinkmann, B. Fite, S. Pratontep, and C. Chaumont, Chem. Mater., 16, 4627–4633 (2004).

    Article  CAS  Google Scholar 

  8. N. M. Shavaleev, H. Adams, J. Best, R. Edge, S. Navaratnam, and J. A. Weinstein, Inorg. Chem., 45, 9410–9415 (2006).

    Article  CAS  Google Scholar 

  9. Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn. J. Appl. Phys., 32, L511–L513 (1993).

    Article  CAS  Google Scholar 

  10. S. M. Kim, J. S. Kim, D. M. Shin, Y. K. Kim, and Y. Ha, Bull. Korean Chem. Soc., 22, 743–747 (2001).

    CAS  Google Scholar 

  11. P. F. Wang, Z. R. Hong, Z. Y. Xie, S. W. Tong, O. Wong, C. S. Lee, N. B. Wong, L. S. Hung, and S. T. Lee, Chem. Commun., 14, 1664/1665 (2003).

    Google Scholar 

  12. T. Yu, W. Su, W. Li, Z. Hong, R. Hua, M. Li, B. Chu, B. Li, Z. Zhang, and Z. Z. Hu, Inorg. Chim. Acta, 359, 2246–2251 (2006).

    Article  CAS  Google Scholar 

  13. H. T. Shi, L. M. Qi, J. M. Ma, and H. M. Cheng, J. Am. Chem. Soc., 125, 3450/3451 (2003).

    Google Scholar 

  14. H. Zhang, D. R. Yang, D. S. Li, X. Y. Ma, S. Z. Li, and D. L. Que, Cryst. Growth. Des., 5, 547–550 (2005).

    Article  CAS  Google Scholar 

  15. D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, and D. Fenske, Adv. Mater., 15, 1747–1750 (2003).

    Article  CAS  Google Scholar 

  16. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. D. Yang, Angew. Chem. Int. Ed., 43, 3673–3677 (2004).

    Article  CAS  Google Scholar 

  17. J. Chen, T. Herricks, and Y. Xia, Angew. Chem. Int. Ed., 44, 2589–2592 (2005).

    Article  CAS  Google Scholar 

  18. D. Horn and J. Rieger, Angew. Chem. Int. Ed., 40, 4330–4361 (2001).

    Article  CAS  Google Scholar 

  19. X. F. Shen and X. P. Yan, Angew. Chem. Int. Ed., 46, 7659–7663 (2007).

    Article  CAS  Google Scholar 

  20. D. E. Zhang, X. J. Zhang, X. M. Ni, H. G. Zheng, and D. D. Yang, J. Magn. Magn. Mater., 292, 79–82 (2005).

    Article  CAS  Google Scholar 

  21. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science, 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  22. W. Lu, X. Qin, Y. Luo, G. Chang, and X. Sun, Microchim. Acta, 175, 355–359 (2011).

    Article  CAS  Google Scholar 

  23. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  24. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature, 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  25. M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, and C. S. Yeh, J. Phys. Chem. B, 103, 6851–6857 (1999).

    Article  CAS  Google Scholar 

  26. E. Shahriari, W. M. M. Yunus, and E. Saion, Braz. J. Phys., 40, 256–260 (2010).

    Article  CAS  Google Scholar 

  27. A. A. Ponce and K. J. Klabunde, J. Mol. Catal. A: Chem., 225, 1–6 (2005).

    Article  CAS  Google Scholar 

  28. N. Iranpoor, H. Firouzabadi, A. Safavi, S. Motevalli, and M. M. Doroodmand, Appl. Organomet. Chem., 26, 417–424 (2012).

    Article  CAS  Google Scholar 

  29. K. Kowlgi, U. Lafont, M. Rappolt, and G. Koper, J. Colloid Interface Sci., 372, 16–23 (2012).

    Article  CAS  Google Scholar 

  30. Z. Khan, S. A. Al-Thabaiti, A. Y. Obaid, and A. O. Al-Youbi, Colloids Surf. B, 82, 513–517 (2011).

    Article  CAS  Google Scholar 

  31. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals, 2nd ed., Springer, New York (1980).

    Google Scholar 

  32. K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, Nature, 353, 414–416 (1991).

    Article  CAS  Google Scholar 

  33. W. F. Zeng, Y. S. Chen, M. Y. Chiang, S. S. Chern, and C. P. Cheng, Polyhedron, 21, 1081–1087 (2002).

    Article  CAS  Google Scholar 

  34. J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J.Chou, and Z. L. Wang, Small, 2, 116–120 (2006).

    Article  CAS  Google Scholar 

  35. P. Gupta and M. Ramrakhiani, Open. Nanosci. J., 3, 15–19 (2009).

    Article  CAS  Google Scholar 

  36. J. Huang, X. Wang, and A. J. Jacobson, J. Mater. Chem., 13, 191–196 (2003).

    Article  CAS  Google Scholar 

  37. P. Jiang, W. Zhu, Z. Gan, W. Huang, J. Li, H. Zeng, and J. Shi, J. Mater. Chem., 19, 4551–4556 (2009).

    Article  CAS  Google Scholar 

  38. L. A. Moreno, J. Visualized Exp., 63, e3066 (2012); doi: 10.3791/3066.

    Google Scholar 

  39. A. S. Juarez and A. Ortiz, J. Electrochem. Soc., 147, 3708–3717 (2000).

    Article  Google Scholar 

  40. L. C. Nehru, V. Swaminathan, and C. Sanjeeviraja, Am. J. Mater. Sci., 2, 6–10 (2012).

    Article  Google Scholar 

  41. G. Ramakrishna and H. N. Ghosh, Langmuir, 19, 505–508 (2003).

    Article  CAS  Google Scholar 

  42. M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, and M. Umeno, J. Phys. Chem. Solids, 60, 201–210 (1999).

    Article  CAS  Google Scholar 

  43. E. Pelizzetti and C. Minero, Elecrochim. Acta, 38, 47–55 (1993).

    Article  CAS  Google Scholar 

  44. B. Li, X. Wang, M. Yan, and L. Li, Mater. Chem. Phys., 78,184–188 (2002).

    Article  CAS  Google Scholar 

  45. Y. Kolenko, B. R. Churagulov, M. Kunst, L. Mazerolles, and C. Colbeau-Justin, Appl. Catal. B, 54, 51–58 (2004).

    Article  CAS  Google Scholar 

  46. W. Zhou, Q. Cao, and S. Tang, Powder Technol., 168, 32–36 (2006).

    Article  CAS  Google Scholar 

  47. M. Kowshik, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, Adv. Mater., 14, 815–818 (2002).

    Article  CAS  Google Scholar 

  48. S. L. Xiong, B. J. Xi, D. C. Xu, C. M. Wang, X. M. Feng, H. Y. Zhou, and Y. T. Qian, J. Phys. Chem. C, 111, 16761–16767 (2007).

    Article  CAS  Google Scholar 

  49. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, J. Appl. Phys., 95, 3141–3147 (2004).

    Article  CAS  Google Scholar 

  50. G. Mills, Z. G. Li, and D. Meisel, J. Phys. Chem., 92, 822–828 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jodaian.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 57, No. 4, pp. 822-830, May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodaian, V., Langeroodi, N.S. & Najafi, E. Structure and photoluminescence properties of TiO2 nanoparticles synthesized from a novel luminescent nano-titanium complex. J Struct Chem 57, 784–792 (2016). https://doi.org/10.1134/S0022476616040235

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616040235

Keywords

Navigation