Skip to main content
Log in

Ion mobility and conductivity in the Li(NH3CH2COO)(NO3) compound

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

(7Li, 1H) NMR and impedance spectroscopy methods are used to study the ion mobility and conductivity in a complex of the composition Li(NH3CH2COO)(NO3) (I), which has a layered crystal structure. The character of ion motions in lithium and proton sublattices with temperature variation is considered; the types of motions and temperature ranges in which they occur are determined. It is found that above 350 K the dominant process in the lithium sublattice of the compound is Li+ ion diffusion. Possible migration paths of lithium ions in the lattice of the compound are analyzed. The specific conductivity of the compound is found to be 2.4×10–6 S/cm at 393 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Ivanov-Shits and I. V. Murin, Ionics of Solid State [in Russian], vol. 1, Izd. S.-Pb. Univ., Saint Petersburg (2000).

    Google Scholar 

  2. R. K. B. Gover and P. R. Slater, Annu. Rep. Prog. Chem., Sect. A, 99, 477–504 (2003).

    Article  CAS  Google Scholar 

  3. A. A. Kuzubov, N. S. Eliseeva, P. O. Krasnov, F. N. Tomilin, and A. S. Fedorov, J. Sib. Fed. Univ., Chem., 5, No. 2, 209–215 (2012).

    CAS  Google Scholar 

  4. R. Bohmer, K. R. Jeffrey, and M. Vogel, Prog. Nucl. Magn. Reson. Spectrosc., 50, 87–174 (2007).

    Article  Google Scholar 

  5. V. Thangadurai and W. Weppner, Ionics, 12, 81–92 (2006).

    Article  CAS  Google Scholar 

  6. M. Forsyth, J. Huang, and D. R. MacFarlane, J. Mater. Chem., 10, 2259–2265 (2000).

    Article  CAS  Google Scholar 

  7. T. Fujinami, M. A. Mehta, K. Sugie, and K. Mori, Electrochim. Acta, 45, 1181–1186 (2000).

    Article  CAS  Google Scholar 

  8. L. V. S. Lopes, D. C. Dragunski, A. Pawlicka, and J. P. Donoso, Electrochim. Acta, 48, 2021–2027 (2003).

    Article  CAS  Google Scholar 

  9. N. H. Kaus, N. Lahazan, and A. H. Ahmad, Polym. Adv. Technol., 20, No. 3, 156–160 (2009).

    Article  CAS  Google Scholar 

  10. R. Rohan, K. Pareek, W. W. Cai, Y. F. Zhang, G. D. Xu, Z. X. Chen, Z. Q. Gao, Z. Dan, and H. S. Cheng, J. Mater. Chem. A, 3, No. 9, 5132–5139 (2015).

    Article  CAS  Google Scholar 

  11. M. Shkir, H. Abbas, S. Kumar, G. Bhagavannarayana, and S. AlFaify, J. Phys. Chem. Solids, 75, No. 8, 959–965 (2014).

  12. J. Baran, M. Drozd, H. Ratajczak, and A. Pietraszko, J. Mol. Struct., 927, Nos. 1-3, 43–53 (2009).

    Article  CAS  Google Scholar 

  13. R. G. Kadyrova, I. F. Kabirov, and R. R. Mullakhmetov, Uch. Zap. Kazan. Gos. Acad. Vet. Med. im. N. E. Baumana, No. 215, 141–147 (2013).

    Google Scholar 

  14. Bruker, APEX2, Bruker AXS Inc., Madison, Wisconsin, USA (2005).

  15. G. M. Sheldrick, Acta Crystallogr., A 64, No. 1, 112–122 (2008).

    Article  CAS  Google Scholar 

  16. S. P. Gabuda, Yu. V. Gagarinskii, and S. A. Polishchuk, NMR in Inorganic Fluorides [in Russian], Atomizdat, Moscow (1978).

    Google Scholar 

  17. V. Ya. Kavun, T. F. Antokhina, N. N. Savchenko, et al., Russ. J. Inorg. Chem., 60, No. 5, 681–690 (2015).

    Article  Google Scholar 

  18. J. Baran, M. Drozd, H. Ratajczak, A. Pietraszko, M. Trzebiatowska, and H. Ratajczak, Polish. J. Chem., 77, 1561–1577 (2013).

    Google Scholar 

  19. R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identification of Organic Compounds, 7th ed., John Wiley & Sons, New York (2005).

    Google Scholar 

  20. A. G. Lundin, and E. I. Fedin, NMR Spectroscopy [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  21. V. Ya. Kavun, and V. I. Sergienko, Diffusion Mobility and Ionic Transport in Crystalline and Amorphous Fluorides of the Group 4 Elements and Antimony(III) [in Russian], Dalnauka, Vladivostok (2004).

    Google Scholar 

  22. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev., 73, No. 7, 679–712 (1948).

    Article  CAS  Google Scholar 

  23. J. M. Bobe, J. M. Réau, J. Senegas, and M. Poulain, J. Non-Cryst. Solids, 209, No. 2, 122–136 (1997).

    Article  CAS  Google Scholar 

  24. Y. Kawamoto, J. Fujiwara, and C. Ichimura, J. Non-Cryst. Solids, 111, Nos. 2/3, 245–251 (1989).

    Article  CAS  Google Scholar 

  25. E. R. Andrew and R. Bersohn, J. Chem. Phys., 18, 159–161 (1950).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Makarenko.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 4, pp. 697-703, May-June, 2016.

Devoted to the 80th anniversary of Professor S. P. Gabuda

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavun, V.Y., Udovenko, A.A., Makarenko, N.V. et al. Ion mobility and conductivity in the Li(NH3CH2COO)(NO3) compound. J Struct Chem 57, 658–664 (2016). https://doi.org/10.1134/S0022476616040041

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616040041

Keywords

Navigation