Skip to main content
Log in

Effect of the calculation method and the basis set on the structure and electrical properties of (4,4) carbon nanotubes with different lengths and open ends

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure and electrical properties of open carbon nanotube with chirality (4,4), consisting of 5-15 segments, are calculated within four quantum chemical models: AM1, PM3, LSDA/3-21G*, and B3LYP/6-31G. Size effects and the effect of the model choice on the geometry, energy, enthalpy and Gibbs energy of the formation (atomization), Mulliken atomic charges, polarizability, and predicted adsorption properties of nanotubes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, No. 5582, 787 (2002).

    Article  CAS  Google Scholar 

  3. P. N. Dyachkov, Electronic Properties and Application of Nanotubes [in Russian], Binom Lab. Znanii, Moscow (2011).

    Google Scholar 

  4. R. Saito, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).

    Book  Google Scholar 

  5. M. V. Kharlamova, Usp. Fiz. Nauk, 183, No. 11, 1145 (2013).

    Article  Google Scholar 

  6. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, Usp. Khim., 79, No. 11, 1027 (2010).

    Article  Google Scholar 

  7. V. I. Irzhak, Usp. Khim., 80, No. 8, 819 (2011).

    Article  Google Scholar 

  8. T. McNally and P. Potschke, Polymer Carbon Nanotube Composites: Preparation, Properties and Applications, Woodhead Publishing, Cambridge, UK (2011).

    Book  Google Scholar 

  9. S. Hou, Z. Shen, X. Zhao, et al., Chem. Phys. Lett., 373, 308 (2003).

    Article  CAS  Google Scholar 

  10. S. Han, M. H. Lee, and J. Ihm, Phys. Rev. B, 65, No. 8, 085405 (2002).

    Article  Google Scholar 

  11. K. Tada and K. Watanabe, Phys. Rev. Lett., 88, No. 12, 127601 (2002).

    Article  CAS  Google Scholar 

  12. J.-M. Bonard, T. Stockli, F. Maier, et al., Phys. Rev. Lett., 81, No. 7, 1441 (1998).

    Article  CAS  Google Scholar 

  13. S. Han and J. Ihm, Phys. Rev. B, 61, No. 15, 9986 (2000).

    Article  CAS  Google Scholar 

  14. T. Yumura, K. Hirahara, S. Bandow, et al., Chem. Phys. Lett., 386, 38 (2004).

    Article  CAS  Google Scholar 

  15. A. De Vita, J.-Ch. Charlier, X. Blasee, et al., Appl. Phys. A, 68, No. 3, 283 (1999).

    Article  Google Scholar 

  16. K. A. Dean and B. R. Chalamala, J. Appl. Phys., 85, No. 7, 3832 (1999).

    Article  CAS  Google Scholar 

  17. E. G. Rakov, Nanotubes and Fullerenes [in Russian], Logos, Moscow (2006).

    Google Scholar 

  18. D. Lovall, M. Buss, E. Grangnard, et al., Phys. Rev. B, 61, No. 8, 5863 (2000).

    Article  Google Scholar 

  19. Z. Q. Xue, W. M. Liu, S. M. Hou, et al., Mater. Sci. Eng. C, 16, Nos. 1/2, 17 (2000).

    Google Scholar 

  20. W. Liu, S. Hou, Z. Zhang, et al., Ultramicroscopy, 94, Nos. 3/4, 175 (2003).

    Article  CAS  Google Scholar 

  21. A. Solhy, B. F. Machado, J. Beauso-leil, et al., Carbon, 46, 1194–1207 (2008).

    Article  CAS  Google Scholar 

  22. N. Pierard, A. Fonseca, Z. Konya, et al., Chem. Phys. Lett, 335, 1 (2001).

    Article  CAS  Google Scholar 

  23. G. Maurin, I. Stepanek, P. Bernier, et al., Carbon, 39, 1273 (2001).

    Article  CAS  Google Scholar 

  24. G. Zhou, W. Duan, and B. Gu, Phys. Rev. Lett., 87, No. 9, 095504 (2001).

    Article  CAS  Google Scholar 

  25. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, et al., J. Am. Chem. Soc., 107, No. 13, 3902 (1985).

    Article  CAS  Google Scholar 

  26. J. J. P. Stewart, J. Comp. Chem., 10, 209 (1989).

    Article  CAS  Google Scholar 

  27. A. D. Becke, Phys. Rev., 38, No. 6, 3098 (1988).

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, No. 2, 785 (1988).

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Gaussian, Inc., Wallingford CT (2009).

    Google Scholar 

  30. E. V. Butyrskaya, Computer Chemistry: Theory Principles and Gaussian and GaussView Program Operation [in Russian], Solon–Press, Moscow (2011).

  31. A. Hirsch and O. Vostrowsky, Top. Curr. Chem, 245, 193 (2005).

    CAS  Google Scholar 

  32. L. N. Sidorov and Yu. A. Makeev, Soros Obraz. Zh., 6, No. 5, 21 (2000).

    Google Scholar 

  33. E. D. Graifer, V. G. Makotchenko, A. S. Nazarov, et al., Usp. Khim., 80, No. 8, 784 (2011).

    Google Scholar 

  34. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science, 323, No. 5914, 610 (2009).

    Article  CAS  Google Scholar 

  35. Y.-H. Li, J. Ding, Z. Luan, et al., Carbon, 41, No. 14, 2787 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Butyrskaya.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 4, pp. 688-696, May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butyrskaya, E.V., Zapryagaev, S.A., Nechaeva, L.S. et al. Effect of the calculation method and the basis set on the structure and electrical properties of (4,4) carbon nanotubes with different lengths and open ends. J Struct Chem 57, 649–657 (2016). https://doi.org/10.1134/S002247661604003X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661604003X

Keywords

Navigation