Skip to main content
Log in

Design of a new rotary molecular machine based on nitrogen inversion: a DFT investigation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations are employed to investigate nitrogen inversion as a configuration change that can supply an extremely useful switchable control mechanism for some complex systems. In this paper, the design of a new artificial rotary molecular machine based on nitrogen inversion is discussed. The introduced design of a molecular rotator is based on the reciprocating motion of a substituent due to the inversion phenomenon, leading to the rotary motion in the molecule. Since simple secondary amines easily face the inversion process at room temperature, aziridine is selected as the initial driver for the molecular motion. The most obvious finding from this study is that, following the displacement of the substituent attached to the aziridine nitrogen atom, two rotary motions occurr in the molecule, one clockwise and another counterclockwise with a 39.52° to 150.09° angle domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Credi, Aust. J. Chem., 59, 157–169 (2006).

    Article  CAS  Google Scholar 

  2. Y. B. Zheng, Q. Hao, Y.-W. Yang, B. Kiraly, I.-K. Chiang, and T. J. Huang, J. Nanophotonics, 4, 042501 (2010).

    Article  Google Scholar 

  3. C. P. Mandl and B. König, Angew. Chem., Int. Ed., 43, 1622–1624 (2004).

    Article  CAS  Google Scholar 

  4. T. Muraoka, K. Kinbara, and T. Aida, Nature, 440, 512/513 (2006).

    Article  Google Scholar 

  5. K. Kinbara and T. Aida, Chem. Rev., 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  6. E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem., Int. Ed., 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  7. R. Knorr, J. Ruhdorfer, J. Mehlstäubl, P. Böhrer, and D. S. Stephenson, Eur. J. Inorg. Chem., 126, 747–754 (1993).

    CAS  Google Scholar 

  8. A. J. Hough, Photochemical Control of Pyramidal Inversion and Photoactivation of Antimicrobial Agents, Department of Chemistry, University of Warwick; http://go.warwick.ac.uk/wrap/57507.

  9. G. Park, S. Kim, and H. Kang, Bull. Korean Chem. Soc., 26, 1339 (2005).

    Article  CAS  Google Scholar 

  10. R. D. Bach and G. J. Wolber, J. Org. Chem., 47, No. 2, 239–245 (1982).

    Article  CAS  Google Scholar 

  11. D. Tanner, Angew. Chem., Int. Ed. Engl., 33, 599–619 (1994).

    Article  Google Scholar 

  12. D. De Loera, F. Liu, K. N. Houk, and M. A. G. Garibay, J. Org. Chem., 78, No. 22, 11623–11626 (2013).

    Article  Google Scholar 

  13. A. Ebrahimi, F. Deyhimi, and H. Roohi, J. Mol. Struct: THEOCHEM, 535, 247–256 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Samadizadeh.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 57, No. 3, pp. 484-487, March-April, 2016.

Original Russian Text © 2016 S. S. Gorgani, M. Samadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorgani, S.S., Samadizadeh, M. Design of a new rotary molecular machine based on nitrogen inversion: a DFT investigation. J Struct Chem 57, 454–458 (2016). https://doi.org/10.1134/S0022476616030057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616030057

Keywords

Navigation