Skip to main content
Log in

Quantum chemical simulation of trans- and cis-isomers of bis-chelate azomethine complexes of Ni(II), Pd(II), and Pt(II) with the MN2Y2 (Y = O, S, Se) coordination core

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Within density functional theory the experimentally observed stereoeffects of the ligand environment in low-spin bis-chelates of Ni(II), Pd(II), and Pt(II) with aromatic azomethines is modeled. It is shown that complexes with the MN2O2 coordination core are characterized by the trans-configuration and in complexes with MN2S2 or MN2Se2 cores the stabilization of the cis-configuration occurs. The relationship is found between the composition of metal cycles and their conformation (an inflection along the donor atom line), the degree of steric hindrances in the cis-configuration due to the interligand interaction of R substituents at azomethine nitrogen atoms and the relative stability of cis- and trans-isomers of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Garnovskii, A. L. Nivorozhkin, and V. I. Minkin, Coord. Chem. Rev., 126, No. 1/2, 1–69 (1993).

    Article  CAS  Google Scholar 

  2. L. Bourget-Merle, M. F. Lappert, and J. R. Severn, Chem. Rev., 102, No. 9, 3031–3066 (2002).

    Article  CAS  Google Scholar 

  3. V. A. Kogan, N. N. Kharabaev, O. A. Osipov, and S. G. Kochin, J. Struct. Chem., 22, No. 1, 96–116 (1981).

    Article  Google Scholar 

  4. A. D. Garnovskii, A. S. Burlov, I. S. Vasil’chenko, et al., Koord. Khim., 36, No. 2, 83–98 (2010).

    Article  Google Scholar 

  5. N. N. Kharabaev, Koord. Khim., 17, No. 5, 579–596 (1991).

    CAS  Google Scholar 

  6. X. Song, Z. Wang, J. Zhao, and T. S. A. Hor, Chem. Commun., 49, 4992–4994 (2013).

    Article  CAS  Google Scholar 

  7. L. Chen, Z. Zhong, C. Chen, X. He, and Y. Chen, J. Organomet. Chem., 752, 100–108 (2014).

    Article  CAS  Google Scholar 

  8. V. V. Jevtic, M. Pesic, S. P. Radic, et al., J. Mol. Struct., 1040, 216–220 (2013).

    Article  CAS  Google Scholar 

  9. A. E. Peterson, J. J. Miller, B. A. Miles, et al., Inorg. Chim. Acta, 415, 88–94 (2014).

    Article  Google Scholar 

  10. S. I. Orysyk, V. V. Bon, V. I. Pekhnyo, et al., Polyhedron, 38, 15–25 (2012).

    Article  CAS  Google Scholar 

  11. A. Bredenkamp, X. Zenq, and F. Mohr, Polyhedron, 33, 107–113 (2012).

    Article  CAS  Google Scholar 

  12. P. K. Dutta, S. Panda, and S. S. Zade, Inorg. Chim. Acta, 411, 83–89 (2014).

    Article  CAS  Google Scholar 

  13. S. A. Al-Jibori, N. A. Dayaaf, M. Y. Mohammed, et al., J. Chem. Crystallogr., 43, 365–372 (2013).

    Article  CAS  Google Scholar 

  14. P. G. Lacroix, F. Averseng, I. Malfant, and K. Nakatani, Inorg. Cnim. Acta, 357, 3825–3835 (2004).

    Article  CAS  Google Scholar 

  15. A. E. Mistryukov, I. S. Vasil′chenko, V. S. Sergienko, et al., Mendeleev Commun., 2, No. 1, 30–32 (1992).

    Article  Google Scholar 

  16. S. I. Orysyk, V. V. Bon, and V. I. Pekhnyo, Acta Crystallogr., Sect. E.: Struct. Rep. Online, 65, m1059 (2009).

    Article  Google Scholar 

  17. N. N. Kharabaev, A. G. Starikov, and V. I. Minkin, Dokl. Akad. Nauk, 458, No. 5, 555–558 (2014).

    Google Scholar 

  18. R. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 03, Revision E.01, Gaussian Inc., Wallingford CT (2004).

    Google Scholar 

  20. A. D. Becke, Phys. Rev., A38, 3098–3102 (1988).

    Article  Google Scholar 

  21. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., B37, 785–790 (1988).

    Article  Google Scholar 

  22. S. F. Sousa, P. A. Fernandes, and M. J. Ramos, J. Phys. Chem. A, 111, No. 42, 10439–10452 (2007).

    Article  CAS  Google Scholar 

  23. K. Burke and L. O. Wagner, Int. J. Quantum Chem., 113, No. 2, 96–101 (2013).

    Article  CAS  Google Scholar 

  24. A. C. Tsipis, Coord. Chem. Rev., 272, 1–29 (2014).

    Article  CAS  Google Scholar 

  25. G. A. Zhurko and D. A. Zhurko, Chemcraft. Version 1.6; http://www.chemcraftprog.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kharabayev.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 3, pp. 461-465, March-April, 2016.

Original Russian Text © 2016 N. N. Kharabayev, A. G. Starikov, V. I. Minkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharabayev, N.N., Starikov, A.G. & Minkin, V.I. Quantum chemical simulation of trans- and cis-isomers of bis-chelate azomethine complexes of Ni(II), Pd(II), and Pt(II) with the MN2Y2 (Y = O, S, Se) coordination core. J Struct Chem 57, 431–436 (2016). https://doi.org/10.1134/S0022476616030021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616030021

Keywords

Navigation