Skip to main content
Log in

A comparative FMR study of the reduction of Co-containing catalysts for the Fischer–Tropsch process in hydrogen and supercritical isopropanol

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

An in situ comparative study of the reduction of Co-containing catalysts for the Fischer–Tropsch process in hydrogen and supercritical (SC) isopropanol is performed by ferromagnetic resonance (FMR) spectroscopy. According to the FMR data, the reduction of cobalt-containing oxide particles to metal in hydrogen starts at temperatures of ~360°C, which is substantially lower than a temperature of the formation of metal particles of the active phase according to powder X-ray diffraction and differential thermogravimetry data (Т ~ 450°C). In SC isopropanol, the reduction to Co metal occurs at lower temperatures (T ~ 245°C) as compared with the reduction temperature for these catalysts in hydrogen. It is shown that the reduction in SC isopropanol can lead to the formation of superparamagnetic Co nanoparticles with a narrow particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. D. Zulkafli, H. Wang, F. Miyashita, et al., J. Supercrit. Fluids, 94, 123 (2014).

    Article  CAS  Google Scholar 

  2. F. A. Reyes, J. A. Mindiola, E. Ibanez, et al., J. Supercrit. Fluids, 92, 75 (2014).

    Article  CAS  Google Scholar 

  3. G. J. Hutchings, J. K. Bartley, J. M. Webster, et al., J. Catal., 197, No. 2, 232 (2001).

    Article  CAS  Google Scholar 

  4. G. J. Hutchings, J. A. Lopez-Sanchez, J. K. Bartley, et al., J. Catal., 208, No. 1, 197 (2002).

    Article  CAS  Google Scholar 

  5. C. J. Kiely, A. Burrows, G. J. Hutchings, et al., Faraday Discuss., 105, 103 (1996).

    Article  CAS  Google Scholar 

  6. G. J. Hutchings, R. Olier, M. T. Sananés, et al., Stud. Surf. Sci. Catal., 82, 213 (1994).

    Article  CAS  Google Scholar 

  7. T. Adschiri, Y. Hakuta, and K. Arai, Ind. Eng. Chem. Res., 39, No. 12, 4901 (2000).

    Article  CAS  Google Scholar 

  8. Y. Hao and A. S. Teja, J. Mater. Res., 18, No. 2, 415 (2003).

    Article  CAS  Google Scholar 

  9. J. Otsua and Y. Oshima, J. Supercrit. Fluids, 33, No. 1, 61 (2005).

    Google Scholar 

  10. C. Xu and A. S. Teja, J. Supercrit. Fluids, 39, No. 1, 135 (2006).

    Article  CAS  Google Scholar 

  11. S. P. Gubin and E. Y. Buslaeva, Russ. J. Phys. Chem. B, 3, No. 8, 1172 (2009).

    Article  Google Scholar 

  12. I. I. Simentsova, A. A. Khassin, G. A. Filonenko, et al., Russ. Chem. Bull., 60, No. 9, 1827 (2011).

    Article  CAS  Google Scholar 

  13. I. I. Simentsova, A. A. Khassin, T. P. Minyukova, et al., Kinet. Catal., 53, No. 4, 497 (2012).

    Article  CAS  Google Scholar 

  14. W. Vogel, Cryst. Res. Technol., 33, Nos. 7/8, 1141 (1998).

    Article  CAS  Google Scholar 

  15. E. M. Moroz, Russ. Chem. Rev., 80, No. 4, 315 (2011).

    Article  Google Scholar 

  16. T. Risse, M. Mozaffari-Afshar, H. Hamann, et al., Angew. Chem., Int. Ed., 43, No. 4, 517 (2004).

    Article  CAS  Google Scholar 

  17. A. Brückner, Chem. Soc. Rev., No. 39, 4673 (2010).

    Article  Google Scholar 

  18. S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Struct. Chem., 54, No. 5, 876 (2013).

    Article  CAS  Google Scholar 

  19. G. A. Bukhtiyarova, M. A. Shuvaeva, O. A. Bayukov, et al., J. Nanopart. Res., 13, No. 10, 5527 (2011).

    Article  CAS  Google Scholar 

  20. A. Brückner, U. Bentrup, H. Zanthoff, et al., J. Catal., 266, No. 1, 120 (2009).

    Article  Google Scholar 

  21. T. Hill, T. Risse, and H. J. Freund, J. Chem. Phys., 122, No. 16, 164704 (2005).

    Article  CAS  Google Scholar 

  22. T. Nowitzki, A. F. Carlsson, O. Martyanov, et al., J. Phys. Chem., 111, No. 24, 8566 (2007).

    CAS  Google Scholar 

  23. O. N. Martyanov, T. Risse, and H.-J. Freund, J. Chem. Phys., 129, 114703 (2008).

    Article  CAS  Google Scholar 

  24. M. P. Felicissimo, O. N. Martyanov, Th. Risse, et al., Surf. Sci., 601, No. 24, 2105 (2007).

    Article  CAS  Google Scholar 

  25. T. Hill, M. Mozaffari-Afshar, J. Schmidt, et al., Chem. Phys. Lett., 292, Nos. 4-6, 524 (1998).

    Article  CAS  Google Scholar 

  26. S. N. Trukhan, V. F. Yudanov, and O. N. Martyanov, J. Supercrit. Fluids, 57, No. 3, 247 (2011).

    Article  CAS  Google Scholar 

  27. S. N. Trukhan, V. F. Yudanov, and O. N. Mart’yanov, Russ. J. Phys. Chem. B, 7, No. 8, 924 (2013).

    Article  CAS  Google Scholar 

  28. J. L. deGrazia, T. W. Randolph, and J. A. O’Brien, J. Phys. Chem. A, 102, No. 10, 1674 (1998).

    Article  CAS  Google Scholar 

  29. T. Tachikawa, K. Akiyama, C. Yokoyama, and S. Tero-Kubota, Chem. Phys. Lett., 376, Nos. 3/4, 350 (2003).

    Article  CAS  Google Scholar 

  30. T. W. Randolph and C. Carlier, J. Phys. Chem., 96, No. 12, 5146 (1992).

    Article  CAS  Google Scholar 

  31. S. N. Batchelor, J. Phys. Chem. B, 102, No. 3, 615 (1998).

    Article  CAS  Google Scholar 

  32. S. V. Vonsovsky, Ferromagnetic Resonance [in Russian], Fizmatlit, Moscow (1961).

  33. R. S. de Biasi and T. S. Devezas, J. Appl. Phys., No. 49, 2466–2469 (1978).

    Article  Google Scholar 

  34. R. Berger, J.-C. Bissey, and J. Kliava, J. Phys.: Condens. Matter, No. 12, 9347 (2000).

    CAS  Google Scholar 

  35. U. Wiedwald, M. Spasova, M. Farle, et al., J. Vac. Sci. Technol., A., 19, No. 4, 1773 (2001).

    Article  CAS  Google Scholar 

  36. F. Gazeau, V. Shilov, J. C. Bacri, et al., J. Magn. Magn. Mater., 202, Nos. 2/3, 535 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nesterov.

Additional information

Original Russian Text © 2016 N. S. Nesterov, I. I. Simentsova, V. F. Yudanov, O. N. Martyanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, N.S., Simentsova, I.I., Yudanov, V.F. et al. A comparative FMR study of the reduction of Co-containing catalysts for the Fischer–Tropsch process in hydrogen and supercritical isopropanol. J Struct Chem 57, 90–96 (2016). https://doi.org/10.1134/S0022476616010108

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616010108

Keywords

Navigation