Skip to main content
Log in

Vibrational analysis, conformational stability, force constants, internal rotation barriers, MP2=full and DFT calculations of 1,3-dimethyluracil tautomers

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular structure of 1,3-dimethyluracil (C6H8N2O2; 1,3-DMU) is studied theoretically and experimentally using Gaussian 98 calculations and different spectroscopic techniques. The vibrational spectrum for 1,3-DMU in the solid phase is recorded in the IR range 4000-400 cm–1. Initially, in order to get the most stable structure, twelve structures were proposed for the titled compound as a result of the internal rotation of CH3 around C–N bonds and keto-enol tautomerism. The single point energy and frequency calculations are obtained by MP2 (Full) and DFT/B3LYP methods with the 6-31G(d) basis set using the Gaussian 98 computation package. After the complete relaxation of twelve isolated isomers, the (diketo) tautomer was the only favored structure owing to its low energy relative to the other isomers and the prediction of real frequencies. This interpretation is supported by the recorded infrared spectrum that shows the presence of only the diketo tautomer. Aided by the normal coordinate analysis and potential energy distributions, a confident vibrational assignment of the fundamental frequencies is calculated. The results are discussed herein and compared with similar molecules whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Krishnakumar and R. J. Xavier, Indian J. Pure Appl. Phys., 41, 597–601 (2003).

    CAS  Google Scholar 

  2. J. G. Contreras and G. V. Seguel, Spectrochim. Acta, 48A, 525–532 (1992).

    Article  CAS  Google Scholar 

  3. J. G. Contreras and G. V. Seguel, Bol. Soc. Chil. Quim., 27, 5–8 (1982).

    CAS  Google Scholar 

  4. N. Sundaraganesan, K. S. Kumar, C. Meganathan, and B. D. Joshua, Spectrochim. Acta, 65A, 1186–1196 (2006).

    Article  CAS  Google Scholar 

  5. K. Balci and S. Akyuz, J. Mol. Struct., 744-747, 909–919 (2005).

    Article  CAS  Google Scholar 

  6. M. K. Subramanian, P. M. Anbarasan, and S. Manimegalai, Spectrochim. Acta, 73A, 642–649 (2009).

    Article  CAS  Google Scholar 

  7. M. Arivazhagan and D. A. Rexalin, Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 107, 347–358 (2013).

    Article  CAS  Google Scholar 

  8. K. S. Jain, T. S. Chitre, P. B. Miniyar, M. K. Kathiravan, V. S. Bendre, V. S. Veer, S. K. Shahane, and C. J. Shishore, Curr. Sci., 90, No. 6, 793–803 (2006).

    CAS  Google Scholar 

  9. M. Ito, R. Shimada, T. Kuraishi, and W. Mizushima, J. Chem. Phys., 25, 597/598 (1956).

    Article  Google Scholar 

  10. R. C. Lord, A. L. Marston, and F. A. Miller, Spectrochim. Acta, 9, 113–125 (1957).

    Article  CAS  Google Scholar 

  11. S. Breda, I. D. Reva, L. Lapinski, M. J. Nowak, and R. Fausto, J. Mol. Struct., 786, 193–206 (2006).

    Article  CAS  Google Scholar 

  12. T. Lukmanov, S. P. Ivanov, E. M. Khamitov, and S. L. Khursan, Comp. Theor. Chem., 38–45 (2013).

    Google Scholar 

  13. H. Schoellhorn, U. Thewalt, and B. Lippert, J. Am. Chem. Soc., 111, No.18, 7213–7221 (1989).

    Article  CAS  Google Scholar 

  14. V. Balachandran and K. Parimala, Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 102, 30–51 (2013).

    Article  CAS  Google Scholar 

  15. A. E. Masunov, S. I. Grischenko, and P. M. Zorkiy, Zh. Fiz. Khim., 67, 221 (1993).

    CAS  Google Scholar 

  16. A. Banelliee, J. K. Dattagupta, W. Saenger, and A. Raaczenko, Acta Crystallogr., B 33, 90–94 (1977).

    Google Scholar 

  17. R. D. Brown, P. D. Godfrey, D. McNaughton, and A. P. Pierlot, J. Am. Chem. Soc., 110, No.7, 2329/2330 (1988).

    Article  Google Scholar 

  18. P. Beak and J. M. White, J. Am. Chem. Soc., 104, No. 25, 7073–7077 (1982).

    Article  CAS  Google Scholar 

  19. A. R. Katritzky, G. Baykut, S. Rachwal, M. Szafran, K. C. Caster, and J. Eyler, J. Chem. Soc., Perkin Trans. 2, No. 10, 1499–1506 (1989).

    Article  Google Scholar 

  20. P. Pulay, Mol. Phys., 17, 197–204 (1969).

    Article  CAS  Google Scholar 

  21. C. Moller and M. S. Plesset, Phys. Rev., 46, 618–622 (1934).

    Article  CAS  Google Scholar 

  22. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, (1989).

    Google Scholar 

  23. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  24. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., 37B, 785–789 (1988).

    Article  Google Scholar 

  26. A. D. Becke, Phys. Rev., 38A, 3098–3100 (1988).

    Article  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh, PA (1998).

    Google Scholar 

  28. R. Dennington, T. Keith, and J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission, KS (2009).

    Google Scholar 

  29. A. Subashini, P. T. Muthiah, and D. E. Lynch, Acta Crystallogr., Sect. E, 64, o426 (2008).

    Article  Google Scholar 

  30. S. Melandri, M. E. Sanz, W. Caminati, P. G. Favero, and Z. Kisiel, J. Am. Chem. Soc., 120, 11504–11509 (1998).

    Article  CAS  Google Scholar 

  31. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).

    Google Scholar 

  32. V. Balachandran, A. Lakshmi, and A. Janaki, Spectrochim. Acta, Part A, 81, 1–7 (2011).

    Article  CAS  Google Scholar 

  33. J. H. Schachtschneider, Vibrational Analysis of Polyatomic Molecules, vols. 5/6, tech. rep. Nos. 231 and 57, Shell Development Co., Houston, TX (1964 and 1965).

    Google Scholar 

  34. P. Sinha, S. E. Boesch, C. Gu, R. A. Wheeler, and A. K. Wilson, J. Phys. Chem., Part A, 108, 9213–9217 (2004).

    Article  CAS  Google Scholar 

  35. Y. Yamaguchi, M. Frisch, J. Gaw, H. F. Schaefer, and J. S. Binkley, J. Chem. Phys., 84, 2262–2278 (1986).

    Article  CAS  Google Scholar 

  36. A. Bondi, J. Phys. Chem., 68, 441–451 (1964).

    Article  CAS  Google Scholar 

  37. P. Pulay, X. Zhou, and G. Fogarasi, in: Recent Experimental and Computational Advances in Molecular Spectroscopy, R. Fausto (ed.), Kluwer Acad. Publ., The Netherlands (1993), p. 99.

  38. M. A. Palafox and V. K. Rastogi, Spectrochim. Acta, 58A, 411–440 (2000).

    Google Scholar 

  39. T. A. Mohamed, J. Mol. Struct.: THEOCHEM, 713, 179–192 (2005).

    Article  CAS  Google Scholar 

  40. T. A. Mohamed and M. M. A. Aly, J. Raman Spectrosc., 35, 869–878 (2004).

    Article  CAS  Google Scholar 

  41. U. A. Soliman, A. M. Hassan, and T. A. Mohamed, Spectrochim. Acta, Part A, 68, 688–700 (2007).

    Article  Google Scholar 

  42. G. W. Chantry, in: Raman Effect, A. Anderson (ed.), vol. 1, Marcel Dekker Inc., NY (1971), ch. 2.

  43. R. D. Amos, Chem. Phys. Lett., 124, 376–381 (1986).

    Article  CAS  Google Scholar 

  44. P. L. Polavarapu, J. Phys. Chem., 94, 8106–8112 (1990).

    Article  CAS  Google Scholar 

  45. http://sdbsdbaistgojp/sdbs/cgi-bin/direct_frame_dispcgi?sdbsno=563.

  46. J. G. David and H. S. Hallam, Spectrochim. Acta, 21, 841–850 (1965).

    Article  CAS  Google Scholar 

  47. P. J. Krueger, Tetrahedron, 26, 4753–4764 (1970).

    Article  CAS  Google Scholar 

  48. M. Arivazhagan and R. Meenakshi, Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 91, 419–430 (2012).

    Article  CAS  Google Scholar 

  49. J. R. Durig and J. S. Church, Spectrochim. Acta, Part A, 36, 957–964 (1980).

    Article  Google Scholar 

  50. G. Socrates. Infrared and Raman Characteristic Group Frequencies, Tables and Charts, 3rd ed., John Wiley and Sons. Chichester (2001).

    Google Scholar 

  51. C. P. Dwivedi and S. N. Sharma, Indian J. Pure Appl. Phys., 11, 447–451 (1973).

    Google Scholar 

  52. G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. 1/2, Addam Hilger (1974).

    Google Scholar 

  53. N. P. Singh and R. A. Yadav, Indian J. Phys., B 75, 347 (2001).

    Google Scholar 

  54. V. Balachandran and K. Parimala, J. Mol. Struct., 1007, 136–145 (2012).

    Article  CAS  Google Scholar 

  55. M. Jag, Organic Spectroscopy–Principles and Application, 2nd ed., Narosa Publication House, New Delhi (2010).

    Google Scholar 

  56. N. L. Alpert, W. E. Keiser, and H. A. Szymanski, Theory and Practice of Infrared Spectroscopy, Plenum/Rosetta, New York (1973).

    Google Scholar 

  57. N. Sundaraganesan, C. Meganathan, and M. Kurt, J. Mol. Struct., 891, 284–291 (2008).

    Article  CAS  Google Scholar 

  58. D. R. Baruah, A. Amma, P. S. Dube, and S. N. Rai, Indian J. Pure Appl. Phys., 8, 761 (1970).

    CAS  Google Scholar 

  59. M. Silverstein, G. C. Basseler, and C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York, (1981).

    Google Scholar 

  60. N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam, and V. Sethuraman, Spectrochim. Acta, Part A, 62, 740–751 (2005).

    Article  CAS  Google Scholar 

  61. T. A. Mohamed, A. M. Hassan, U. A. Soliman, W. M. Zoghaib, J. Husband, and S. M. Hassan, Spectrochim. Acta, Part A, 79, 1722–1730 (2011).

    Article  CAS  Google Scholar 

  62. J. H. S. Green, D. J. Harrison, and W. Kynbaston, Spectrochim. Acta, Part A, 27, 793–806 (1971).

    Article  CAS  Google Scholar 

  63. H. Susi and J. S. Ard, Spectrochim. Acta, Part A, 30, 1843–1853 (1974).

    Article  Google Scholar 

  64. R. K. Goel, S. P. Gupta, M. L. Agarwal, and S. N. Sharma, Indian J. Pure Appl. Phys., 19, 501 (1981).

    CAS  Google Scholar 

  65. J. Mohan, Organic Spectroscopy-Principle and Applications, 2nd ed., Narosa Publishing House, New Delhi (2000), pp. 30–32.

    Google Scholar 

  66. N. P. G. Roeges, Guide to The Interpretation of Infrared Spectra of Organic Structures, John Wiley and Sons, Chichester (1994).

    Google Scholar 

  67. D. N. Sathiyanarayanan, Vibrational Spectroscopy Theory and Application, New Age International Publishers, New Delhi (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Soliman.

Additional information

Original Russian Text © 2016 U. A. Soliman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, U.A. Vibrational analysis, conformational stability, force constants, internal rotation barriers, MP2=full and DFT calculations of 1,3-dimethyluracil tautomers. J Struct Chem 57, 76–89 (2016). https://doi.org/10.1134/S0022476616010091

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616010091

Keywords

Navigation