Skip to main content
Log in

A theoretical investigation on the N–N bond cleavage in Ta(IV) hydrazidium and Ta(V) hydrazido complexes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanism of the N–N bond cleavage in Ta(IV) hydrazido and hydrazidium complexes is studied using density functional theory. The N–N bond cleavage in Ta(IV) hydrazidium generates formal Ta(IV) nitridyl. The N–N bond cleavage in Ta(V) hydrazido gives terminal Ta(V) nitrido species. In the tetrahydrofuran solvent, terminal Ta(V) nitrido dimerizes through a one-step direct pathway leading to the [Ta(V),Ta(V)] bis(μ-nitrido) product. Two Ta–N bonds form simultaneously between the Ta center of one molecule and the terminal N atom of another. In the toluene solvent, there are two pathways of H atom abstraction and protonation producing mononuclear Ta(V) parent imide. The former consists of three steps originated from formal Ta(IV) nitridyl. The latter is unfavorable with terminal Ta(V) nitrido as the precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hinrichsen, H. Broda, C. Gradert, et al., Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 108, 17–47 (2012).

    Article  CAS  Google Scholar 

  2. D. V. Yandulov and R. R. Schrock, Science, 301, 76–78 (2003).

    Article  CAS  Google Scholar 

  3. R. R. Schrock, Acc. Chem. Res., 38, 955–962 (2005).

    Article  CAS  Google Scholar 

  4. S. A. DiFranco, R. J. Staplesa, and A. L. Odom, Dalton Trans., 42, 2530–2539 (2013).

    Article  CAS  Google Scholar 

  5. T. Shima, S. W. Hu, G. Luo, et al., Science, 340, 1549–1552 (2013).

    Article  CAS  Google Scholar 

  6. M. D. Fryzuk, Science, 340, 1530/1531 (2013).

    Article  Google Scholar 

  7. M. D. Fryzuk, Chem. Commun., 49, 4866–4868 (2013).

    Article  CAS  Google Scholar 

  8. T. M. Figg, P. L. Holland, and T. R. Cundari, Inorg. Chem., 51, 7546–7550 (2012).

    Article  CAS  Google Scholar 

  9. K. Umehara, S. Kuwata, and T. Ikariya, J. Am. Chem. Soc., 135, 6754–6757 (2013).

    Article  CAS  Google Scholar 

  10. I. A. Tonks, A. C. Durrell, H. B. Gray, et al., J. Am. Chem. Soc., 134, 7301–304 (2012).

    Article  CAS  Google Scholar 

  11. A. J. Keane, P. Y. Zavalij, and L. R. Sita, J. Am. Chem. Soc., 135, 9580–9583 (2013).

    Article  CAS  Google Scholar 

  12. a)_B. L. Yonke, J. P. Reeds, P. Y. Zavalij, and L. R. Sita, Angew. Chem., Int. Ed., 50, 12342–12346 (2011)

    Article  CAS  Google Scholar 

  13. J. P. Reeds, B. L. Yonke, P. Y. Zavalij, and L. R. Sita, J. Am. Chem. Soc., 133, 18602–18605 (2011)

    Article  CAS  Google Scholar 

  14. P. P. Fontaine, B. L. Yonke, P. Y. Zavalij, and L. R. Sita, J. Am. Chem. Soc., 132, 12273–12285 (2010).

    Article  CAS  Google Scholar 

  15. a)_J. Sgrignani, D. Franco, and A. Magistrato, Molecules, 16, 442–465 (2011)

    Article  CAS  Google Scholar 

  16. B. L. Tran, B. Pinter, A. J. Nichols, et al., J. Am. Chem. Soc., 134, 13035–13045 (2012).

    Article  CAS  Google Scholar 

  17. M. J. Frisch et. al., Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT (2009).

    Google Scholar 

  18. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  19. A. D. Becke, J. Chem. Phys., 104, 1040–1046 (1996).

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1998).

    Article  Google Scholar 

  21. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299–310 (1985).

    Article  CAS  Google Scholar 

  22. W. R. Wadt and P. J. Hay, J. Chem. Phys., 82, 284–298 (1985).

    Article  CAS  Google Scholar 

  23. O. Tapia, J. Math. Chem., 10, 139–181 (1992).

    Article  CAS  Google Scholar 

  24. J. Tomasi and M. Persico, Chem. Rev., 94, 2027–2094 (1994).

    Article  CAS  Google Scholar 

  25. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999–3093 (2005).

    Article  CAS  Google Scholar 

  26. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 100, 5829–5835 (1994).

    Article  CAS  Google Scholar 

  27. T. Ide, D. Takeuchi, and K. Osakada, Chem. Commun., 48, 278–280 (2012).

    Article  CAS  Google Scholar 

  28. W. Zhang, Y. Tang, M. Lei, et al., Inorg. Chem., 50, 9481–9490 (2011).

    Article  CAS  Google Scholar 

  29. a)_N. Lu, L. Meng, D. Z. Chen, et al., J. Phys. Chem. A, 116, 670–679 (2012)

    Article  CAS  Google Scholar 

  30. N. Lu and H. Wang, Dalton Trans., 42, 13931–13939 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lu.

Additional information

Original Russian Text © 2016 N. Lu, H. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Wang, H. A theoretical investigation on the N–N bond cleavage in Ta(IV) hydrazidium and Ta(V) hydrazido complexes. J Struct Chem 57, 47–53 (2016). https://doi.org/10.1134/S0022476616010066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616010066

Keywords

Navigation