Skip to main content

Substituent and solvent effects on geometric and electronic structure of C5H5Ir(PH3)3 iridabenzene: A theoretical insight

Abstract

Using MPW1PW91 quantum chemical calculations, we report structures, frontier orbital analysis, natural bond analysis, and aromaticity of the C5H5Ir(PH3)3 iridabenzene and XC5H4Ir(PH3)3 para-substituted iridabenzenes. The substituent effects were estimated from the donor–acceptor interaction energies of the natural bond orbitals of substituent and iridabenzene frame. Nucleus-independent chemical shift (NICS) has been evaluated to understand the aromaticity. Time dependent density functional theory (TD-DFT) is used to calculate the energy, oscillatory strength and wavelength absorption maxima (λmax) of electronic transitions and their nature. Changes in hyperpolarizability of molecules are studied. Influence of solvent on the structure, frontier orbital energies, λmax, and hyperpolarizability of C5H5Ir(PH3)3 iridabenzene has been studied.

This is a preview of subscription content, access via your institution.

References

  1. J. R. Bleeke, Chem. Rev., 101, 1205 (2001).

    Article  CAS  Google Scholar 

  2. G. He, H. Xia, and G. Jia, Chin. Sci. Bull., 49, 1543 (2004).

    CAS  Google Scholar 

  3. L. J. Wright, J. Chem. Soc., Dalton Trans., 1821 (2006).

    Google Scholar 

  4. J. Chen and G. Jia, Coord. Chem. Rev., 257, 2491 (2013).

    Article  CAS  Google Scholar 

  5. R. Ghiasi, Russ. J. Coord. Chem., 37, 72 (2011).

    Article  CAS  Google Scholar 

  6. V. Jacob, C. W. Landorf, L. N. Zakharov, T. J. R. Weakley, and M. M. Haley, Organometallics, 28, 5183 (2009).

    Article  CAS  Google Scholar 

  7. M. Paneque, C. M. Posadas, and M. L. Poveda, J. Am. Chem. Soc., 125, 9898 (2003).

    Article  CAS  Google Scholar 

  8. R. D. Gilbertson, T. L. S. Lau, and S. Lanza, Organometallics, 22, 3279 (2003).

    Article  CAS  Google Scholar 

  9. R. D. Gilbertson, T. J. R. Weakley, and M. M. Haley, J. Am. Chem. Soc., 121, 2597 (1999).

    Article  CAS  Google Scholar 

  10. R. D. Gilbertson, T. J. R. Weakley, and M. M. Haley, Chem. Eur. J., 6, 437, (2008).

    Article  Google Scholar 

  11. C. W. Landorf and M. M. Haley, Angew. Chem., Int. Ed., 45, 3914 (2006).

    Article  CAS  Google Scholar 

  12. I. Fernandez and G. Frenking, Chem. Eur. J., 13, 5873 (2007).

    Article  CAS  Google Scholar 

  13. M. A. Iron, A. C. B. Lucassen, H. Cohen, M. E. Boom, and J. M. L. Martin, J. Am. Chem. Soc., 126, 11699 (2004).

    Article  CAS  Google Scholar 

  14. C. E. F. Rickard, W. R. Roper, S. D. Woodgate, and L. J. Wright, Angew. Chem., Int. Ed., 39, 750 (2000).

    Article  CAS  Google Scholar 

  15. G. R. Clark, P. M. Johns, W. R. Roper, and L. J. Wright, Organometallics, 27, 451 (2008).

    Article  CAS  Google Scholar 

  16. R. Ghiasi, Struct. Chem., 25 (2014).

    Google Scholar 

  17. R. Ghiasi and E. E. Mokarram, Russ. J. Coord. Chem., 37, 463 (2011).

    Article  CAS  Google Scholar 

  18. G. R. Clark, P. M. Johns, W. R. Roper, and L. J. Wright, Organometallics, 25, 1771 (2006).

    Article  CAS  Google Scholar 

  19. G. R. Clark, G.-L. Lu, W. R. Roper, and L. J. Wright, Organometallics, 26, 2167 (2007).

    Article  CAS  Google Scholar 

  20. A. F. Dalebrook and L. J. Wright, Organometallics, 28, 5536 (2009).

    Article  CAS  Google Scholar 

  21. T. Wang, S. Li, H. Zhang, R. Lin, F. Han, Y. Lin, T. B. Wen, and H. Xia, Angew. Chem., Int. Ed., 48, 6453 (2009).

    Article  CAS  Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.03, Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  23. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, 650 (1980).

    Article  CAS  Google Scholar 

  24. A. J. H. Wachters, J. Chem. Phys., 52, 1033 (1970).

    Article  CAS  Google Scholar 

  25. P. J. Hay, J. Chem. Phys., 66, 4377 (1977).

    Article  CAS  Google Scholar 

  26. A. D. McLean and G. S. Chandler, J. Chem. Phys., 72, 5639 (1980).

    Article  CAS  Google Scholar 

  27. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 299 (1985).

    Article  CAS  Google Scholar 

  28. P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 284 (1985).

    Article  Google Scholar 

  29. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 97, 2571 (1992).

    Article  CAS  Google Scholar 

  30. C. Adamo and V. Barone, J. Chem. Phys., 108, 664 (1998).

    Article  CAS  Google Scholar 

  31. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988).

    Article  CAS  Google Scholar 

  32. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO, 3.1, Gaussian Inc., Pittsburg, PA (2003).

    Google Scholar 

  33. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and Pv. R. Schleyer, Chem. Rev., 105, 3842 (2005).

    Article  CAS  Google Scholar 

  34. Pv. R. Schleyer, C. Marker, A. Dransfeld, H. Jiao, and N. J. R. V. Hommes, J. Am. Chem. Soc., 118, 6317 (1996).

    Article  CAS  Google Scholar 

  35. Pv. R. Schleyer, M. Monohar, Z. Wang, B. Kiran, H. Jiao, R. Puchta, and N. J. R. V. Hommes, Org. Lett., 3, 2465 (2001).

    Article  CAS  Google Scholar 

  36. C. Corminboeuf, T. Heine, G. Seifert, Pv. R. Schleyer, and J. Weber, Phys. Chem. Chem. Phys., 6, 273 (2004).

    Article  CAS  Google Scholar 

  37. H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, and Pv. R. Schleyer, Org. Lett., 8, 863 (2006).

    Article  CAS  Google Scholar 

  38. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990).

    Article  CAS  Google Scholar 

  39. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langer, J. Comput. Chem., 29, 839 (2008).

    Article  Google Scholar 

  40. D. A. Keleiman, Phys. Rev., 126, 1977 (1962).

    Article  Google Scholar 

  41. E. Runge and E. K. U. Gross, Phys. Rev. Lett., 52, 997 (1984).

    Article  CAS  Google Scholar 

  42. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999 (2005).

    Article  CAS  Google Scholar 

  43. P. J. Mendes, T. J. L. Silva, A. J. P. Carvalho, and J. P. P. Ramalho, J. Mol. Struct.: THEOCHEM, 946, 33 (2010).

    Article  CAS  Google Scholar 

  44. L. M. Chen, J. C. Chen, H. Luo, et al., J. Theor. Comput. Chem., 10, 581 (2011).

    Article  CAS  Google Scholar 

  45. X. Cao, C. Liu, and Y. Liu, J. Theor. Comput. Chem., 11, 573 (2012).

    Article  CAS  Google Scholar 

  46. C. W. Landorf and M. M. Haley, Angew. Chem., Int. Ed., 45, 3914 (2006).

    Article  CAS  Google Scholar 

  47. L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936).

    Article  CAS  Google Scholar 

  48. K. Clays and A. Persoons, Phys. Rev. Lett., 66, 2980 (1991).

    Article  CAS  Google Scholar 

  49. H. Lee, S.-Y. An, and M. Cho, J. Phys. Chem. B, 103, 4992 (1999).

    Article  CAS  Google Scholar 

  50. P. C. Ray and J. Leszczynski, Chem. Phys. Lett., 399, 162 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Additional information

Original Russian Text © 2015 R. Ghiasi, E. Amini.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 8, pp. 1545-1556, December, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, R., Amini, E. Substituent and solvent effects on geometric and electronic structure of C5H5Ir(PH3)3 iridabenzene: A theoretical insight. J Struct Chem 56, 1483–1494 (2015). https://doi.org/10.1134/S0022476615080053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615080053

Keywords

  • iridabenzene
  • substituent effect
  • solvent effect
  • natural bond orbital (NBO) analysis
  • nucleus independent chemical shift (NICS)
  • hyperpolarizability