Skip to main content
Log in

Spectroscopic characterization, X-ray structure and DFT studies on 4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-N-methylthiazol-2-amine

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The titled molecule 4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-N-methylthiazol-2-amine (C17H22N2S) is synthesized and characterized by 1H NMR, 13C NMR, IR, and X-ray single crystal determination. The compound crystallizes in the monoclinic space group P21/c with a = 6.3972(4) Å, b = 9.4988(6) Å, c = 26.016(2) Å and β = 93.496(7)°. In addition to the molecular geometry from the X-ray determination, vibrational frequencies and gauge, including the atomic orbital (GIAO), 1H and 13C NMR chemical shift values of the titled compound in the ground state are calculated using the density functional (B3LYP) method with 6-31G(d), 6-31++G(d,p) and 6-311+G(2d,p) basis sets. The calculated results show that the optimized geometries can well reproduce the crystal structure. Moreover, the theoretical vibrational frequencies and chemical shift values show good agreement with the experimental values. The predicted nonlinear optical properties of the titled compound are greater than those of urea. DFT calculations of the molecular electrostatic potentials and frontier molecular orbitals of the titled compound are carried out at the B3LYP/6-31G(d) level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zollinger, Colour Chemistry Syntheses Properties and Applications of Organic Dyes and Pigments, 2nd ed., VCH, Weinheim (1991).

    Google Scholar 

  2. P. J. Islip, M. D. Closier, and M. C. Neville, J. Med. Chem., 17, No. 2, 207–209 (1974).

    Article  CAS  Google Scholar 

  3. K. Brown, D. P. Cater, J. F. Cavalla, D. Green, R. A. Newberry, and A. B. Wilson, J. Med. Chem., 17, No. 11, 1177–1181 (1974).

    Article  CAS  Google Scholar 

  4. L. Coghi, A. M. M. Lanfredi, and A. Tripicchio, J. Chem. Soc., Perkin Trans. 2, 1808–1810 (1976).

    Article  Google Scholar 

  5. V. A. Saprykina, V. I. Vinogradova, R. F. Ambartsumova, T. F. Ibragimov, and Kh. M. Shakhidoyatov, Chem. Nat. Compd., 42, 4470–4472 (2006).

    Article  Google Scholar 

  6. J. D. Hadjipavlou-Litina and A. Geronikaki, Arzneim.-Forsch./Drug Res., 46, 805–808 (1996).

    CAS  Google Scholar 

  7. A. Cukurovali, I. Yilmaz, S. Gur, and C. Kazaz, Eur. J. Med. Chem., 41, 201–207 (2006).

    Article  CAS  Google Scholar 

  8. F. D. Proft and P. Geerlings, Chem. Rev., 101, 1451–1464 (2001).

    Article  Google Scholar 

  9. G. Fitzgerald and J. Andzelm, J. Phys. Chem., 95, 10531–10534 (1991).

    Article  CAS  Google Scholar 

  10. T. Ziegler, Pure Appl. Chem., 63, 873–878 (1991).

    Article  CAS  Google Scholar 

  11. J. Andzelm and E. Wimmer, J. Chem. Phys., 96, 1280–1303 (1992).

    Article  CAS  Google Scholar 

  12. G. E. Scuseria, J. Chem. Phys., 97, 7528–7530 (1992).

    Article  CAS  Google Scholar 

  13. R. M. Dickson and A. D. Becke, J. Chem. Phys., 99, 3898–3905 (1993).

    Article  CAS  Google Scholar 

  14. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys., 98, 5612–5626 (1993).

    Article  CAS  Google Scholar 

  15. N. Oliphant and R. J. Bartlett, J. Chem. Phys., 100, 6550–6556 (1994).

    Article  CAS  Google Scholar 

  16. M. A. Akhmedov, I. K. Sardarov, I. M. Akhmedov, R. R. Kostikov, A. V. Kisin, and N. M. Babaev, Zh. Org. Khim., 27, 1434 (1991).

    CAS  Google Scholar 

  17. G. M. Sheldrick, SHELXS-97 & SHELXL-97, University of Göttingen, Germany (1997).

    Google Scholar 

  18. H. B. Schlegel, J. Comput. Chem., 3, 214–218 (1982).

    Article  CAS  Google Scholar 

  19. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem., 17, 49–56 (1996).

    Article  CAS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN-03, Revision E.01, Gaussian Inc., Wallingford, CT (2004).

    Google Scholar 

  21. A. Frisch, R. I. I. Dennington, T. Keith, J. Millam, A. B. Nielsen, A. J. Holder, and J. Hiscocks, GaussView Reference, Version 4.0, Gaussian Inc., Pittsburgh (2007).

    Google Scholar 

  22. A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502–16513 (1996).

    Article  CAS  Google Scholar 

  23. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 108, 6908–6918 (2004).

    Article  CAS  Google Scholar 

  24. R. Ditchfield, J. Chem. Phys., 56, No. 11, 5688–5691 (1972).

    Article  CAS  Google Scholar 

  25. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc., 112, No. 23, 8251–8260 (1990).

    Article  CAS  Google Scholar 

  26. P. Politzer and J. S. Murray, Theor. Chem. Acc., 108, 134–142 (2002).

    Article  CAS  Google Scholar 

  27. L. J. Farrugia, J. Appl. Crystallogr., 30, 565/566 (1997).

  28. F. H. Allen, Acta Crystallogr., B40, 64–72 (1984).

    Article  CAS  Google Scholar 

  29. I. Kowalczyk, E. Bartoszak-Adamska, M. Jasko´lski, Z. Dega-Szafran, and M. Szafran, J. Mol. Struct., 976, 119–128 (2010).

    Article  CAS  Google Scholar 

  30. G. Liu, L. Liu, D. Jia, and K. Yu, J. Chem. Crystallogr., 35, 497 (2005).

    Article  CAS  Google Scholar 

  31. Q. Ma, L.-P. Lu, and M.-L. Zhu, Acta Crystallogr., E64, o2026 (2008).

    Google Scholar 

  32. Ç. Yüksektepe, H. Saraçoglu, M. Koca, A. Cukurovali, and N. Çaliskan, Acta Crystallogr., C60, o509/o510 (2004).

    Google Scholar 

  33. Ç. Yüksektepe, S. Soylu, H. Saraçoglu, N. Çaliskan, A. Cukurovali, I Yilmaz, and C. Kazaz, Acta Crystallogr., E61, o2384–o2386 (2005).

    Google Scholar 

  34. M. S. Soylu, N. Çalışkan, A. Cukurovali, I. Yılmaz, and O. Büyükgüngör, Acta Crystallogr., C61, o725–o727 (2005).

    CAS  Google Scholar 

  35. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, Chichester (1994). ch. 9.

    Google Scholar 

  36. G. Herzberg, Molecular Spectra and Molecular Structure, vol. 2, Van Nostrand, New York (1945). chap. 3, sect. 3.

    Google Scholar 

  37. A. Teimouri, M. Emami, A. N. Chermahini, and H. A. Dabbagh, Spectrochim. Acta, 71A, 1749–1755 (2009).

    Article  CAS  Google Scholar 

  38. I. Hubert Joe, G. Aruldhas, S. Anbukumar, and P. Ramasamy, Cryst. Res. Technol., 29, 685–692 (1994).

    Article  Google Scholar 

  39. G. Litvinov, Proc. Int. Conf. Raman Spectrosc., 13th, Wurzburg, Germany (1992).

    Google Scholar 

  40. K. Furic, V. Mohacek, M. Bonifacic, and I. Stefanic, J. Mol. Struct. 267, 39–44 (1992).

    Article  CAS  Google Scholar 

  41. G. Lan, H. Wang, and J. Zheng, Spectrochim. Acta, 46A, 1211–1216 (1990).

    Article  CAS  Google Scholar 

  42. A. Teimouri, A. N. Chermahini, K. Taban, and H. A. Dabbagh, Spectrochim Acta, 72A, 369–377 (2009).

    Article  CAS  Google Scholar 

  43. E. Scrocco and J. Tomasi, Adv. Quant. Chem., 11, 115–193 (1978).

    Article  CAS  Google Scholar 

  44. F. J. Luque, J. M. Lopez, and M. Orozco, Theor. Chem. Acc., 103, 343–345 (2000).

    Article  CAS  Google Scholar 

  45. N. Okulik and A. H. Jubert, Internet Electron J. Mol. Des., 4, 17–30 (2005).

    CAS  Google Scholar 

  46. P. Politzer, P. R. Laurence, and K. Jayasuriya, Environ. Health Perspect., 61, 191–202 (1985).

    Article  CAS  Google Scholar 

  47. E. Scrocco and J. Tomasi, Top. Curr. Chem., 7, 95–170 (1973).

    Google Scholar 

  48. P. Politzer and D. G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York (1981).

    Book  Google Scholar 

  49. S. Demir, M. Dinçer, E. Korkusuz, and İ. Yıldırım, J. Mol. Struct., 980, 1–6 (2010).

    Article  CAS  Google Scholar 

  50. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley, London (1976).

    Google Scholar 

  51. Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, Y. S. Wang, J. Mol. Struct.: THEOCHEM, 904, 74–82 (2009).

    Article  CAS  Google Scholar 

  52. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, and A. Collet, J. Am. Chem. Soc., 116, 2094–2102 (1994).

    Article  CAS  Google Scholar 

  53. V. M. Geskin, C. Lambert, and J. L. Bredas, J. Am. Chem. Soc., 125, 15651–15658 (2003).

    Article  CAS  Google Scholar 

  54. M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi, J. Am. Chem. Soc., 124, 9648–9655 (2002).

    Article  CAS  Google Scholar 

  55. D. Sajan, H. Joe, V. S. Jayakumar, and J. Zaleski, J. Mol. Struct., 785, 43–53 (2006).

    Article  CAS  Google Scholar 

  56. R. Zhang, B. Du, G. Sun, and Y. X. Sun, Spectrochim. Acta, 75A, 1115–1124 (2010).

    Article  CAS  Google Scholar 

  57. D. A. Kleinman, Phys. Rev., 126, 1977–1979 (1962).

    Article  CAS  Google Scholar 

  58. K. S. Thanthiriwatte and K. M. Nalin de Silva, J. Mol. Struct.: THEOCHEM, 617, 169–175 (2002).

    Article  CAS  Google Scholar 

  59. Y. X. Sun, Q. L. Hao, Z. X. Yu, W. X. Wei, L. D. Lu, and X. Wang, Mol. Phys., 107, 223–235 (2009).

    Article  CAS  Google Scholar 

  60. A. B. Ahmed, H. Feki, Y. Abid, H. Boughzala, C. Minot, and A. Mlayah, J. Mol. Struct., 920, 1–7 (2009).

    Article  Google Scholar 

  61. J. P. Abraham, D. Sajan, V. Shettigar, S. M. Dharmaprakash, I. Nemec, I. H. Joe, and V. S. Jayakumar, J. Mol. Struct., 917, 27–36 (2009).

    Article  CAS  Google Scholar 

  62. S. G. Sagdinc and A. Esme, Spectrochim. Acta, 75A, 1370–1376 (2010).

    Article  CAS  Google Scholar 

  63. A. B. Ahmed, H. Feki, Y. Abid, H. Boughzala, and C. Minot, Spectrochim. Acta, 75A, 293–298 (2010).

    Article  Google Scholar 

  64. M. C. Ruiz Delgado, V. Hernandez, J. Casado, J. T. Lopez Navarre, J. M. Raimundo, P. Blanchard, and J. Roncali, J. Mol. Struct.: THEOCHEM, 709, 187–193 (2004).

    Article  CAS  Google Scholar 

  65. M. C. Ruiz Delgado, V. Hernandez, J. Casado, J. T. Lopez Navarre, J. M. Raimundo, P. Blanchard, and J. Roncali, J. Mol. Struct., 651-653, 151–158 (2003).

    Article  CAS  Google Scholar 

  66. J. P. Abraham, D. Sajan, V. Shettigar, S. M. Dharmaprakash, I. Nemec, I. Hubert Joe, and V. S. Jayakumar, J. Mol. Struct., 917, 27–36 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Saraçoğlu.

Additional information

Original Russian Text © 2015 H. Saraçoğlu, Ö. Ekici.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1405-1414, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraçoğlu, H., Ekici, Ö. Spectroscopic characterization, X-ray structure and DFT studies on 4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]-N-methylthiazol-2-amine. J Struct Chem 56, 1342–1352 (2015). https://doi.org/10.1134/S002247661507015X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661507015X

Keywords

Navigation