Skip to main content
Log in

Design of a new dihedral-angle-controlled molecular scissors: A DFT investigation

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT calculations are employed to investigate the effects of the addition of a photoisomerizable stilbene unit to Aida′s molecular scissors on relative energies, dipole moments, and kinetic stability according to HOMO-LUMO energy gaps and amplitude of the open-close motion of blade moieties. The most obvious finding emerging from this study is the coming into existence of a new pair of molecular scissors operated by two photoswitchable units. Based on photoisomerization of azobenzene and stilbene units, four conformations appear for these new molecular scissors: cis–cis, cis–trans, trans–cis, and trans–trans. The HOMO-LUMO energy gaps promise that all isomers are kinetically stable. The other important finding is that in these new molecular scissors the dihedral angle between the two blade moieties can be controlled and measured through the open-close motion and the blade parts can adopt two middle states in addition to open-close forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White, and D. J. Williams, Angew. Chem. Int. Ed., 36, 2068–2070 (1997).

    Article  CAS  Google Scholar 

  2. E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, Wiley-Interscience, New York (1994).

    Google Scholar 

  3. C. Dugave and L. Demange, Chem. Rev., 103, 2475–2532 (2003).

    Article  CAS  Google Scholar 

  4. D. H. Waldeck, Chem. Rev., 91, 415–436 (1991).

    Article  CAS  Google Scholar 

  5. H. Meier, Angew. Chem., Int. Ed., 31, 1399–1420 (1992).

    Article  Google Scholar 

  6. J. Saltiel, D. F. Sears Jr., D.-H. Ko, and K.-M. Park, in: CRC Handbook of Organic Photochemistry and Photobiology, W. M. Horspool and P.-S. Song (eds.), CRC, Boca Raton (1995). pp. 3–15.

  7. H. Suginome, in: CRC Handbook of Organic Photochemistry and Photobiology W. M. Horspool and P.-S. Song (eds.), CRC, Boca Raton (1995). pp. 824–840.

  8. E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem., Int. Ed., 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  9. E. Durgun and J. C. Grossman, J. Phys. Chem. Lett., 4, 854–860 (2013).

    Article  CAS  Google Scholar 

  10. V. Balzani, A. Credi, S. Silvi, and M. Venturi, Chem. Soc. Rev., 35, 1135–1149 (2006).

    Article  CAS  Google Scholar 

  11. T. Muraoka, K. Kinbara, Y. Kobayashi, and T. Aida, J. Am. Chem. Soc., 125, 5612/5613 (2003).

    Article  Google Scholar 

  12. T. Muraoka, K. Kinbara, and T. Aida, Nature, 440, 512/513 (2006).

    Article  Google Scholar 

  13. F. M. Raymo, Angew. Chem., Int. Ed., 45, 5249–5251 (2006).

    Article  CAS  Google Scholar 

  14. E. Merino and M. Ribagorda, Beilstein J. Org. Chem., 8, 1071–1090 (2012).

    Article  CAS  Google Scholar 

  15. T. Muraoka and K. Kinbara, J. Photochem. Photobiol. C, 13, 136–147 (2012).

    Article  CAS  Google Scholar 

  16. Y. B. Zheng, Q. Hao, Y.-W. Yang, B. Kiraly, I. Chiang, and T. J. Huang, J. Nanophotonics, 4, 4 (2010).

    Article  CAS  Google Scholar 

  17. K. Kinbara and T. Aida, Chem. Rev., 105, 1396 (2005).

    Article  Google Scholar 

  18. A. D. Becke, Phys. Rev. A, 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  19. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  21. P. C. Hariharan and J. A. Pople, Mol. Phys., 27, 209–214 (1974).

    Article  CAS  Google Scholar 

  22. J. Pople, Chem. Phys., 77, 3654–3665 (1982).

    Google Scholar 

  23. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, J. Comput. Chem., 7, 379 (1986).

    Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, P. G. A. Petresson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian03, revision C.02, Gaussian Inc, Wallingford (2004).

    Google Scholar 

  25. T. Schultz, J. Quenneville, B. Levine, A. Toniolo, T. J. Martínez, S. Lochbrunner, M. Schmitt, J. P. Shaffer, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc., 125, 8098/8099 (2003).

    Article  Google Scholar 

  26. K. G. Yager and C. J. Barrett, J. Photochem. Photobiol., C, 182, 250–261 (2006).

    Article  CAS  Google Scholar 

  27. J. S. Baskin, L. Bañares, S. Pedersen, and A. H. Zewail, J. Phys. Chem., 100, 11920–11933 (1996).

    Article  CAS  Google Scholar 

  28. J. Quenneville and T. J. Martínez, J. Phys. Chem., 107A, 829 (2003).

    Article  Google Scholar 

  29. J. Aihara, Theor. Chem. Acc., 102, 134–138 (1999).

    Article  CAS  Google Scholar 

  30. M. Yoshidaa and J. Aihara, Phys. Chem. Chem. Phys., 1, 227–230 (1999).

    Article  Google Scholar 

  31. R. H. El Halabieh, O. Mermut, and C. J. Barrett, Pure Appl. Chem., 76, 1445–1465 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Gorgani.

Additional information

Original Russian Text © 2015 M. Samadizadeh, S. S. Gorgani.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1354-1358, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadizadeh, M., Gorgani, S.S. Design of a new dihedral-angle-controlled molecular scissors: A DFT investigation. J Struct Chem 56, 1290–1294 (2015). https://doi.org/10.1134/S0022476615070082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615070082

Keywords

Navigation