Skip to main content
Log in

Structural and electronic properties of heptachlor

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, the molecular geometry of heptachlor is investigated using ab initio HF, DFT, LDA, and GGA methods. The natural bond orbital (NBO) analysis is performed at the B3LYP/6-311++G(d,p) level of theory. The first order hyperpolarizability βtotal, the mean polarizability Δα, the anisotropy of the polarizability Δα, and the dipole moment μ, are calculated by B3LYP/6-311++G(d,p) and HF/6- 311++G(d,p) methods. The first order hyperpolarizability (βtotal) is calculated based on the finite field approach. UV spectral parameters along with HOMO, LUMO energies for heptachlor are determined in vacuum and the solvent phase using HF, DFT, and TD-DFT/B3LYP methods implemented with the 6-311++G(d,p) basis set. Atomic charges and electron density of heptachlor in vacuum and ethanol are calculated using DFT/B3LYP and TD-DFT/B3LYP methods and the 6-311++G(d,p) basis set. In addition, after the frontier molecular orbitals (FMOs), the molecular electrostatic potential (MEP), the electrostatic potential (ESP), the electron density (ED), and the solvent accessible surface of heptachlor are visualized as a results of the B3LYP/6-311++G(d,p) calculation. Densities of states (DOS), the external electric field (EF) effect on the HOMO-LUMO gap, and the dipole moment are investigated by LDA and GGA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toxicological Profile for Chlordane (Draft), US Public Health Service, US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA (1992).

  2. Toxicological Profile for Heptachlor: Heptachlor Epoxide, US Public Health Service, US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA (1993).

  3. Toxicological Profile for Toxaphene, US Public Health Service, US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA (1990).

  4. J. Keilhorn, S. Schmidt, I. Mangelsdorf, and P. Howe, Heptachlor. Concise International Chemical Assessment Document 70, Fraunhofer ITEM, Hanover, Germany, Centre of Ecology and Hydrology, Monks Wood, UK, World Health Organization, Switzerland (2006).

    Google Scholar 

  5. E. R. Steffneyi, M. Y. Peter, F. C. Linda, et al., Toxicol. Lett., 104, 127–135 (1999).

    Article  Google Scholar 

  6. M. Kerkhoff, J. de Boer, and J. Geerdes, Sci. Total Environ., 19, 41–50 (1981).

    Article  CAS  Google Scholar 

  7. P. R. Becker, E. A. Mackey, R. Demiralp, et al., Chemosphere, 34, 2067–2098 (1997).

    Article  CAS  Google Scholar 

  8. P. A. Stehr-Green, J. C. Wohlleb, W. Royce, et al., J. Am. Med. Assoc., 259, No. 3, 374–377 (1988).

    Article  CAS  Google Scholar 

  9. M. D. Salman, J. S. Reif, L. Rupp, et al., J. Toxicol. Environ. Health, 31, No. 2, 125–132 (1990).

    Article  CAS  Google Scholar 

  10. M. A. Mora, Arch. Environ. Contam. Toxicol., 31, 533–537 (1996).

    Article  CAS  Google Scholar 

  11. Persistent Organic Pollutants Assessment Report, International Programme on Chemical Safety (IPSC), Inter Organization Programme for the Sound Management of Chemicals (IOMC) (1995).

  12. M. D. Reuber, J. Toxicol. Environ. Health, 5, No. 4, 729–748 (1979).

    Article  CAS  Google Scholar 

  13. M. D. Reuber, J. Environ. Pathol., Toxicol. Oncol., 7, No. 3, 85–114 (1987).

    CAS  Google Scholar 

  14. Integrated Risk Information System (IRIS) on Chlordane, US Environmental Protection Agency, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development, Cincinnati, OH (1993).

  15. S. Telang, C. Tong, and G. M. Williams, Carcinogenesis, 3, 1175–1178 (1982).

    Article  CAS  Google Scholar 

  16. R. J. Ruch, R. Fransson, S. Flodstrom, et al., Carcinogenesis, 11, No. 7, 1097–1101 (1990).

    Article  CAS  Google Scholar 

  17. K. S. Kang, M. R. Wilson, T. Hayashi, et al., Environ. Health Perspect., 104, No. 2, 192–200 (1996).

    CAS  Google Scholar 

  18. J. M. Soler, E. Artacho, J. D. Gale, et al., J. Phys.: Condens. Matter, 14, 2745–2779 (2002).

    CAS  Google Scholar 

  19. J. P. Perdew and A. Zunger, Phys. Rev. B, 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  20. Y. Zhang and W. Yang, Phys. Rev. Lett., 80, 890 (1998).

    Article  CAS  Google Scholar 

  21. L. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  22. N. Troullier, J. L. Martins, et al., Phys. Rev. B, 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  23. L. Kleinman and D. M. Bylander, Phys. Rev. Lett., 48, 1425–1428 (1982).

    Article  CAS  Google Scholar 

  24. M. J. Frisch et al., Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT (2009).

    Google Scholar 

  25. K. G. Shields and C. H. L. Kennard, J. Chem. Soc., Perkin Trans. 2, 1374–1376 (1973).

    Article  Google Scholar 

  26. J. R. Durig, T. S. Little, T. K. Gounev, et al., J. Mol. Struct., 375, 83–94 (1996).

    CAS  Google Scholar 

  27. F. L. Huyskens, P. L. Huyskens, and A. P. Person, J. Chem. Phys., 108, 8161–8171 (1998).

    Article  CAS  Google Scholar 

  28. J. Olsen and P. J. Jørgensen, J. Chem. Phys., 82, 3235–3264 (1985).

    Article  CAS  Google Scholar 

  29. T. U. Helgaker, H. J. A. Jensen, and P. J. Jørgensen, J. Chem. Phys., 84, 6280–6284 (1986).

    Article  CAS  Google Scholar 

  30. Y. G. Sıdır and İ. Sıdır, J. Mol. Struct., 1045, 131–138 (2013).

    Article  Google Scholar 

  31. Y. G. Sidir, İ. Sıdır, E. Tasal, et al. Int. J. Quant. Chem., 111, 3616–3629 (2011).

  32. E. Scrocco and J. Tomasi, Adv. Quantum Chem., 11, 115–193 (1978).

    Article  CAS  Google Scholar 

  33. F. J. Luque, J. M. Lopez, and M. Orozco, Theor. Chem. Acc., 103, 343–345 (2000).

    Article  CAS  Google Scholar 

  34. M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Am. Chem. Soc., 113, 4776–4782 (1991).

    Article  CAS  Google Scholar 

  35. E. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys., 107, No. 8, 3032–3041 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gülseven Sıdır.

Additional information

Original Russian Text © 2015 Y. Gülseven Sıdır, İ. Sıdır, F. Demiray.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1339-1353, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülseven Sıdır, Y., Sıdır, İ. & Demiray, F. Structural and electronic properties of heptachlor. J Struct Chem 56, 1275–1289 (2015). https://doi.org/10.1134/S0022476615070070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615070070

Keywords

Navigation