Skip to main content
Log in

Gas phase conformational behavior of selenomethionine: A computational elucidation

  • Structure of Organic Compounds: Calculations and Experiments
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Selenium containing amino acids are known to play numerous key biological roles in various lifesupporting processes. In the current theoretical investigation DFT(B3LYP) and MP2 methods are used to study the gas phase conformers of the selenomethionine molecule in view of their relative stabilities, theoretically predicted harmonic frequencies, HOMO-LUMO energy gaps, rotational constants, and dipole moments. The number and type of intramolecular H-bond interactions existing in the selenomethionine conformers, which play key roles in determining the energy of the conformers, are also analyzed. The predicted geometries as well as the relative stabilities of the conformers suggest that the structural aspects and energies of the conformers may depend on the level of theory and the size of the basis set used. A comparison of the vibrational frequencies furnished in this study with the previous experimental and theoretical results obtained at MP2/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels promotes the interpretation of the vibrational spectroscopy data on biologically relevant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mason, Dietary Supplementation, 2nd ed., Bath Pharmaceutical Press, Bath (2001).

    Google Scholar 

  2. O. A. Levander, in: Trace Elements in Human and Animal Nutrition, W. Mertz (ed.), 5th ed., vol. 2, Academic Press, Orlando (1986).

  3. H. B. von Stockhausen, Biol. Trace Elem. Res., 15, 147–155 (1988).

    Article  CAS  Google Scholar 

  4. E. J. Z. Baran, Z. Naturforsch., B: J. Chem. Sci., 60, 663–666 (2005).

    CAS  Google Scholar 

  5. G. Faraglia and D. Fregona, Transition Met. Chem., 22, 492–496 (1997).

    Article  CAS  Google Scholar 

  6. P. Frisk, A. Yaqob, K. Nilsson, and U. Lindh, Biol. Trace Elem. Res., 80, 251–268 (2001).

    Article  CAS  Google Scholar 

  7. B. Rossi, G. Mariotto, E. Ambrosic, and H. L. Monacoc, J. Raman Spectrosc., 40, 1844–1848 (2009).

    Article  CAS  Google Scholar 

  8. G. Das, Struct. Chem., 25, 873–882 (2013).

    Article  Google Scholar 

  9. K. T. Lee, J. Sung, K. J. Lee, Y. D. Park, and S. K. Kim, Angew. Chem., Int. Ed., 41, 4114–4117 (2002).

    Article  CAS  Google Scholar 

  10. G. Das, and S. Mandal, J. Mol. Model., 19, 1695–1704 (2013).

    Article  CAS  Google Scholar 

  11. D. Kaur, P. Sharma, P. V. Bharatam, and M. Kaur, Int. J. Quant. Chem., 108, 983–991 (2008).

    Article  CAS  Google Scholar 

  12. J. Rak, P. Skurski, J. Simons, and M. Gutowski, J. Am. Chem. Soc., 123, 11695–11707 (2001).

    Article  CAS  Google Scholar 

  13. C. L. Brooks III, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, John Wiley & Sons, New York (1988).

    Google Scholar 

  14. P. Amodeo and V. Barone, J. Am. Chem. Soc., 144, 9085–9093 (1992).

    Article  Google Scholar 

  15. C. Aleman and J. Puiggali, J. Phys. Chem. B, 101, 3441–3446 (1997).

    Article  CAS  Google Scholar 

  16. J. R. Peterson, L. C. Bickford, D. Morgan, A. D. Kim, O. Ouerfelli, M. W. Kirschner, and M. K. Rosen, Nat. Struct. Mol. Biol., 11, 747–755 (2004).

    Article  CAS  Google Scholar 

  17. K. W. Plaxco and M. Gross, Nature, 386, 657–659 (1997).

    Article  CAS  Google Scholar 

  18. V. N. Uversky, J. R. Gillespie, and A. L. Fink, Proteins, 41, 415–427 (2000).

    Article  CAS  Google Scholar 

  19. C. D. Coldren, H. W. Hellinga, and J. P. Caradonna, Proc. Natl. Acad. Sci. USA, 94, 6635–6640 (1997).

    Article  CAS  Google Scholar 

  20. W. F. DeGrado, C. M. Summa, V. Pavone, F. Nastri, and A. Lombardi, Annu. Rev. Biochem., 68, 779–819 (1999).

    Article  CAS  Google Scholar 

  21. Y. Lu, S. M. Berry, and T. D. Pfister, Chem. Rev., 101, 3047–3080 (2001).

    Article  CAS  Google Scholar 

  22. Y. Lu, Curr. Opin. Chem. Biol., 9, 118–126 (2005).

    Article  CAS  Google Scholar 

  23. J. Xie, W. Liu, and P. G. Schultz, Angew. Chem., Int. Ed., 46, 9239–9242 (2007).

    Article  CAS  Google Scholar 

  24. E. Czinki and A. G. Csaszar, Chem. Eur. J., 9, 1008–1019 (2003).

    Article  CAS  Google Scholar 

  25. M. Chen, Z. Huang, and Z. Lin, J. Mol. Struct.: THEOCHEM, 719, 153–158 (2005).

    Article  CAS  Google Scholar 

  26. M. Zhang and M. Lin, J. Mol. Struct.: THEOCHEM, 760, 159–166 (2006).

    Article  CAS  Google Scholar 

  27. Z. Huang and Z. Lin, J. Phys. Chem. A., 109, 2656–2659 (2005).

    Article  CAS  Google Scholar 

  28. T. Szidarovszky, G. Czako, and A. G. Csaszar, Mol. Phys., 107, 761–775 (2009).

    Article  CAS  Google Scholar 

  29. Z. A. Tehrani, E. Tavasoli, and A. Fattahi, J. Mol. Struct.: THEOCHEM, 960, 73–85 (2010).

    Article  CAS  Google Scholar 

  30. Z. B. Maksic and B. Kovacevic, J. Chem. Soc., Perkin Trans. 2, 2623–2629 (1999).

    Article  Google Scholar 

  31. S. Gronert and R. A. O’Hair, J. Am. Chem. Soc., 117, 2071–2081 (1995).

    Article  CAS  Google Scholar 

  32. S. Shirazian and S. Gronert, J. Mol. Struct.: THEOCHEM, 397, 107–112 (1997).

    Article  Google Scholar 

  33. B. Lambie, R. Ramaekers, and G. Maes, J. Phys. Chem. A, 108, 10426–10433 (2004).

    Article  CAS  Google Scholar 

  34. S. G. Stepanian, I. D. Reva, E. D. Radchenko, and L. Adamowicz, J. Phys. Chem. A, 102, 4623–4629 (1998).

    Article  CAS  Google Scholar 

  35. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  36. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  37. M. P. Andersson and P. Uvdal, J. Phys. Chem. A, 109, 2937–2941 (2005).

    Article  CAS  Google Scholar 

  38. G. Das, J. Mol. Model., 19, 1901–1911 (2013).

    Article  CAS  Google Scholar 

  39. G. Das and S. Mandal, J. Mol. Model. 19, 1695–1704 (2013).

    Article  CAS  Google Scholar 

  40. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc, Pittsburgh (1996).

    Google Scholar 

  41. F. Freeman and K. T. Le, J. Phys. Chem. A, 107, 2908–2918 (2003).

    Article  CAS  Google Scholar 

  42. M. J. Frisch et al., Gaussian 09, Revision C.01, Wallingford, CT (2010).

    Google Scholar 

  43. R. Linder, K. Seefeld, A. Vavra, and K. Kleinermanns, Chem. Phys. Lett., 453, 1–6 (2008).

    Article  CAS  Google Scholar 

  44. S. G. Stepanian, I. D. Reva, E. D. Radchenko, M. T. S. Rosado, M. L. T. S. Duarte, R. Fausto, and L. Adamowicz, J. Phys. Chem. A, 102, 1041–1054 (1998).

    Article  CAS  Google Scholar 

  45. A. Lesarri, R. Sanchez, E. J. Cocinero, J. C. Lopez, and J. L. Alonso, J. Am. Chem. Soc., 127, 12952–12956 (2005).

    Article  CAS  Google Scholar 

  46. E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem., 83, No. 8, 1637–1641 (2011).

    CAS  Google Scholar 

  47. Y. P. Yurenko, R. O. Zhurakivsky, S. P. Samijlenko, and D. M. Hovorun, J. Biomol. Struct. Dyn., 29, 51–56 (2011).

    Article  CAS  Google Scholar 

  48. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986).

    Google Scholar 

  49. S. Y. Lee, and B. H. Boo, J. Phys. Chem., 100, 8782–8785 (1996).

    Article  CAS  Google Scholar 

  50. S. Mandal, G. Das, and H. Askari, J. Chem. Inf. Model. (2014). doi: 10.1021/ci500500k.

    Google Scholar 

  51. F. D. Proft, J. M. L. Martin, and P. Geerlings, Chem. Phys. Lett., 250, 393–401 (1996).

    Article  Google Scholar 

  52. Y. Dimitrova, Spectrochim. Acta, Part. A, 60, 1–8 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Das.

Additional information

Original Russian Text © 2015 S. Mandal, G. Das.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 7, pp. 1301-1311, November-December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Das, G. Gas phase conformational behavior of selenomethionine: A computational elucidation. J Struct Chem 56, 1235–1245 (2015). https://doi.org/10.1134/S0022476615070021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615070021

Keywords

Navigation