Skip to main content
  • Proceedings of the Conference “X-ray and Electronic Spectra and Chemical Bond (XESCB)”
  • Published:

X-ray spectroscopy of carbon-encapsulated iron nanoparticles

Abstract

The composition and electronic structure of carbon-encapsulated iron nanoparticles Fe@C are examined by X-ray photoelectron, X-ray absorption, and resonant emission spectroscopy methods. It is found that the core in the Fe@C nanocomposite is in the metallic state with an impurity of iron carbide, which is preserved for two years. Experimentally measured spectra are compared to the calculations of the electronic structure of graphene performed at the density functional theory level. It is revealed that the Fe@C carbon shell can be presented as several graphene layers with Stone-Wales topological defects. Based on the measurements of X-ray resonant emission Kα spectra of carbon, the energy band dispersion of the carbon shell of Fe@C nanoparticles is investigated and the manifestation of Stone-Wales defects in them is shown.

This is a preview of subscription content, access via your institution.

References

  1. V. R. Galakhov, A. S. Shkvarin, A. S. Semenova, M. A. Uimin, A. A. Mysik, N. N. Shchegoleva, A. Ye. Yermakov, and E. Z. Kurmaev, J. Phys. Chem. C, 114, 22413–22416 (2010).

    CAS  Article  Google Scholar 

  2. V. R. Galakhov, A. Buling, M. Neumann, N. A. Ovechkina, A. S. Shkvarin, A. S. Semenova, M. A. Uimin, A. A. Mysik, N. N. Shchegoleva, A. Ye. Yermakov, E. Z. Kurmaev, O. Y. Vilkov, and D. W. Boukhvalov, J. Phys. Chem. C, 115, 24615–24620 (2011).

    CAS  Article  Google Scholar 

  3. A. J. Stone and D. J. Wales, Chem. Phys. Lett., 128, 501–503 (1986).

    CAS  Article  Google Scholar 

  4. E. S. Lokteva, S. A. Kachevskii, A. O. Turakulova, E. V. Golubina, V. V. Lunin, A. E. Ermakov, M. A. Uimin, and A. A. Mysik, Zh. Fiz. Khim., 83, 1463–1470 (2009).

    Google Scholar 

  5. A. E. Ermakov, M. A. Uimin, E. S. Lokteva, A. A. Mysik, S. A. Kachevskii, A. O. Turakulova, V. S. Gaviko, and V. V. Lunin, Zh. Fiz. Khim., 83, 1338–1345 (2009).

    Google Scholar 

  6. V. A. Tsurin, A. E. Ermakov, M. A. Uimin, A. A. Mysik, N. N. Shchegoleva, V. S. Gaviko, and V. V. Maikov, Fiz. Tverd. Tela, 56, 287–300 (2014).

    CAS  Google Scholar 

  7. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter, 31, 395502 (2009).

    Google Scholar 

  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  9. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comput. Chem., 30, 934–939 (2008).

    Article  Google Scholar 

  10. S. J. Li, H. Yumoto, M. Shimotomai, and M. Ishihara, Thin Solid Films, 345, 23–28 (1999).

    CAS  Article  Google Scholar 

  11. E. Papastavros, P. J. Shea, and M. A. Langell, Langmuir, 20, 11509–11516 (2004).

    CAS  Article  Google Scholar 

  12. V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, N. I. Lobachevskaya, M. Raekers, C. Taubitz, A. R. Cioroianu, and M. Neumann, J. Electron Spectrosc. Relat. Phenom., 185, 598–601 (2012).

    CAS  Article  Google Scholar 

  13. H.-K. Jeong, H.-J. Noh, J.-Y. Kim, P.-A. Glans, M. H. Jin, K. E. Smith, and Y. H. Lee, Phys. Rev. Lett., 102, 099701 (2009).

    Article  Google Scholar 

  14. S. Entani, S. Ikeda, M. Kiguchi, and K. Saiki, Appl. Phys. Lett., 88, 153126 (2006).

    Article  Google Scholar 

  15. D. Pacilé, M. Papagno, A. F. Rodríguez, M. Grioni, L. Papagno, Ç. Ö. Girit, J. C. Meyer, G. E. Begtrup, and A. Zettl, Phys. Rev. Lett., 101, 066806 (2008).

    Article  Google Scholar 

  16. V. A. Coleman, R. Knut, O. Karis, H. Grennberg, U. Jansson, R. Quinlan, B. C. Holloway, B. Sanyal, and O. Eriksson, J. Phys. D: Appl. Phys., 41, 062001 (2008).

    Article  Google Scholar 

  17. Yu. S. Dedkov, M. Sicot, and M. Fonin, J. Appl. Phys., 107, 09E121 (2010).

    Article  Google Scholar 

  18. W. Hua, B. Gao, S. Li, H. Ågren, and Y Luo, Phys. Rev. B, 82, 155433 (2010).

    Article  Google Scholar 

  19. P. Skytt, P. Glans, C. Mancini, J.-H. Guo, N. Wassdahl, J. Nordgren, and Y. Ma, Phys. Rev. B, 50, 10457–10461 (1994).

    CAS  Article  Google Scholar 

  20. J. A. Carlisle, E. L. Shirley, E. A. Hudson, L. J. Terminello, T. A. Callcott, J. J. Jia, D. L. Ederer, R. C. C. Perera, and F. J. Himpse, Phys. Rev. Lett., 74, 1234–1237 (1995).

    CAS  Article  Google Scholar 

  21. J. A. Carlisle, E. L. Shirley, L. J. Terminello, J. J. Jia, T. A. Callcott, D. L. Ederer, R. C. C. Perera, and F. J. Himpse, Phys. Rev. B, 59, 7433–7445 (1999).

    CAS  Article  Google Scholar 

  22. A. V. Sokolov, E. Z. Kurmaev, J. MacNaughton, A. Moewes, N. A. Skorikov, and L. D. Finkelstein, JETP Lett., 77, 108–111 (2003).

    CAS  Article  Google Scholar 

  23. S. Eisebitt, A. Karl, W. Eberhards, J. E. Fischer, C. Sathe, A. Agui, and J. Nordgren, Appl. Phys. A, 67, 89–93 (1998).

    CAS  Article  Google Scholar 

  24. B. Gao, J. Jiang, Z. Wu, and Y. Luo, J. Chem. Phys., 128, 084704 (2008).

    Article  Google Scholar 

  25. J. Zhong, J. Chiou, C. Dong, L. Song, C. Liu, S. Xie, H. Cheng, W.-F. Pong, C. Chang, Y. Chen, Z. Wu, and J. Guo, Appl. Phys. Lett., 93, 023107 (2008).

    Article  Google Scholar 

  26. J. Zhong, L. Song, J. Chiou, C. Dong, X. Liang, D. Chen, S. Xie, W.-F. Pong, C. Chang, J. Guo, and Z. Wu, Appl. Phys. Lett., 96, 213112 (2010).

    Article  Google Scholar 

  27. S. Rajasekaram, S. Kaya, T. Anniyev, H. Ogasawara, and A. Nilsson, Phys. Rev. B, 85, 045419 (2012).

    Article  Google Scholar 

  28. J. Lüning, J.-E. Rubensson, C. Ellmers, S. Eisebitt, and W. Eberhardt, Phys. Rev. B, 56, 13147–13150 (1997).

    Article  Google Scholar 

  29. Y. Ma, N. Wassdahl, P. Skytt, J. Guo, J. Nordgren, P. D. Johnson, J-E. Rubensson, T. Boske, W. Eberhardt, and S. D. Kevan, Phys. Rev. Lett., 69, 2598–2601 (1992).

    CAS  Article  Google Scholar 

  30. V. R. Galakhov, S. N. Shamin, E. M. Mironova, M. A. Uimin, A. Ye. Yermakov, and D. W. Boukhvalov, JETP Lett., 96, 710–713 (2012).

    Article  Google Scholar 

  31. Y. Muramatsu, S. Hirono, S. Umemura, Y. Ueno, T. Hayashi, M. M. Grush, E. M. Gullikson, and R. C. C. Perera, Carbon, 30, 1403–1407 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Galakhov.

Additional information

Original Russian Text © 2015 V. R. Galakhov, S. N. Shamin, M. A. Uimin, A. E. Ermakov, D. W. Bukhvalov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 3, pp. 508–515, May–June, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galakhov, V.R., Shamin, S.N., Uimin, M.A. et al. X-ray spectroscopy of carbon-encapsulated iron nanoparticles. J Struct Chem 56, 478–485 (2015). https://doi.org/10.1134/S0022476615030130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615030130

Keywords

  • X-ray absorption spectra
  • photoelectron spectra
  • resonant inelastic X-ray scattering
  • carbonen-capsulated nanoparticles
  • Stone-Wales defects