Skip to main content
Log in

Novel magnetic materials based on semiconducting 1111 phases: Theory and experiment

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A brief review of theoretical and experimental studies devoted to the design of novel magnetic materials based on non-magnetic semiconductor phases with the ZrCuSiAs structure type (such as LaCuSO, LaCuSeO, LaZnAsO, YZnAsO, or SrAgSeF) by doping their sublattices with magnetic and non-magnetic substitutional impurities is presented. Using the results of ab initio calculations of the band structure, we discuss the possibility of obtaining new magnetic semiconductors, magnetic metals and half-metals, and also gapless magnetic semiconductors and bipolar magnetic semiconductors based on the 1111 phases. The available experimental data on the synthesis and properties of materials based on semiconducting 1111 phases doped with atoms of alkali-earth and magnetic 3d metals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 130, 3296 (2008).

    Article  CAS  Google Scholar 

  2. M. V. Sadovskii, Physics — Uspekhi, 51, 1201 (2008).

    Article  CAS  Google Scholar 

  3. A. L. Ivanovskii, Physics — Uspekhi, 51, 1229 (2008).

    Article  CAS  Google Scholar 

  4. Z. A. Ren and Z. X. Zhao, Adv. Mater., 21, 4584 (2009).

    Article  CAS  Google Scholar 

  5. J. A. Wilson, J. Phys.: Condens. Matter., 22, 203201 (2010).

    Google Scholar 

  6. D. C. Johnson, Adv. Phys., 59, 803 (2010).

    Article  Google Scholar 

  7. A. L. Ivanovskii, Russ. Chem. Rev., 79, 1 (2010).

    Article  CAS  Google Scholar 

  8. M. K. Wu, F. C. Hsu, K. W. Yeh, T. W. Huang, J. Y. Luo, M. J. Wang, H. H. Chang, T. K. Chen, S. M. Rao, B. H. Mok, C. L. Chen, Y. L. Huang, C. T. Ke, P. M. Wu, A. M. Chang, C. T. Wu, and T. P. Perng, Physica C, 469, 340 (2009).

    Article  CAS  Google Scholar 

  9. A. L. Ivanovskii, Physica C, 471, 409 (2011).

    Article  CAS  Google Scholar 

  10. R. Pöttgen and D. Johrendt, Z. Naturforsch., 63b, 1135 (2008).

    Google Scholar 

  11. T. C. Ozawa and S. M Kauzlarich, Sci. Technol. Adv. Mater., 9, 033003 (2008).

    Article  Google Scholar 

  12. D. Johrendt, J. Mater. Chem., 21, 13726 (2011).

    Article  CAS  Google Scholar 

  13. D. Johrendt, H. Hosono, R.-D. Hoffmann, and R. Pottgen, Z. Kristallogr., 226, 435 (2011).

    Article  CAS  Google Scholar 

  14. J. Paglione and R. L. Greene, Nature Phys., 6, 645 (2010).

    Article  CAS  Google Scholar 

  15. S. Muir and M. A. Subramanian, Prog. Solid State Chem., 40, 41 (2012).

    Article  CAS  Google Scholar 

  16. K. Ueda, K. Takafuji, H. Yanagi, T. Kamiya, H. Hosono, H. Hiramatsu, M. Hirano, and N. Hamada, J. Appl. Phys., 102, 113714 (2007).

    Article  Google Scholar 

  17. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosono, Chem. Mater., 20, 326 (2008).

    Article  CAS  Google Scholar 

  18. K. Ueda, H. Hosono, and N. Hamada, J. Appl. Phys., 98, 043506 (2005).

    Article  Google Scholar 

  19. H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, Appl. Phys. A, 79, 1517 (2004).

    CAS  Google Scholar 

  20. T. Ohtani, M. Hirose, T. Sato, K. Nagaoka, and M. Iwabe, Jpn. J. Appl. Phys., 32, 316 (1993).

    Article  CAS  Google Scholar 

  21. A. T. Nientiedt and W. Jeitschko, Inorg. Chem., 37, 386 (1998).

    Article  CAS  Google Scholar 

  22. D. Johrendt and R. Pottgen, Angew. Chem. Int. Ed., 47, 4782 (2008).

    Article  CAS  Google Scholar 

  23. D. O. Charkin, A. V. Urmanov, and S. M. Kazakov, J. Alloys Compd., 516, 134 (2012).

    Article  CAS  Google Scholar 

  24. K. Ueda, K. Takafuji, and H. Hosono, J. Solid State Chem., 170, 182 (2003).

    Article  CAS  Google Scholar 

  25. G. Xu, W. Ming, Y. Yao, X. Dai, S. C. Zhang, Z. Fang; arXiv:0803.1282 (2008).

  26. H. Lincke, R. Glaum, V. Dittrich, M. H. Moller, and R. Pottgen, Z. Anorg. Allg. Chem., 635, 936 (2009).

    Article  CAS  Google Scholar 

  27. K. Kayanuma, R. Kawamura, H. Hiramatsu, H. Yanagi, M. Hirano, T. Kamiya, and H. Hosono, Thin Solid Films, 516, 5800 (2008).

    Article  CAS  Google Scholar 

  28. J. M. D. Coey, Solid State Sci., 7, 660 (2005).

    Article  CAS  Google Scholar 

  29. J. M. D. Coey and S. Sanvito, J. Phys. D: Appl. Phys., 37, 988 (2004).

    Article  CAS  Google Scholar 

  30. P. H. Dederichs, I. Galanakis, and Ph. Mavropoulos, J. Electron. Microsc., 54,Suppl.1, i53 (2005).

    Article  CAS  Google Scholar 

  31. P. A. Dowben and R. Skomski, J. Appl. Phys., 95, 7453 (2004).

    Article  CAS  Google Scholar 

  32. Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, G. M. Stocks, and H. Winter, J. Magn. Magn. Mater., 272–276, 1816 (2004).

    Article  Google Scholar 

  33. I. R. Shein, M. A. Gorbunova, Yu. N. Makurin, V. S. Kiiko, and A. L. Ivanovskii, Int. J. Mod. Phys. B, 22, 4987 (2008).

    Article  CAS  Google Scholar 

  34. X. L. Wang, Phys. Rev. Lett., 100, 156404 (2008).

    Article  CAS  Google Scholar 

  35. 35. X. Li, X. Wu, Z. Li, J. Yang, and J. G. Ho; arXiv:cond-matter:1208.1355 (2012).

  36. X. Li and J. Yang, Phys. Chem. Chem. Phys., 15, 15793 (2013).

    Article  CAS  Google Scholar 

  37. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Mater. Chem. Phys., 116, 129 (2009).

    Article  CAS  Google Scholar 

  38. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Solid State Sci., 14, 89 (2012).

    Article  CAS  Google Scholar 

  39. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, J. Solid State Chem., 196, 601 (2012).

    Article  CAS  Google Scholar 

  40. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry, Clarendon Press, Oxford, UK (1990).

    Google Scholar 

  41. H. Hiramatsu, T. Kamiya, T. Tohei, E. Ikenaga, T. Mizoguchi, Y. Ikuhara, K. Kobayashi, and H. Hosono, J. Am. Chem. Soc., 132, 15060 (2010).

    Article  CAS  Google Scholar 

  42. X. Wang, Y. Guo, B. Li, Y. Tsujimoto, and K. Yamaura, J. Alloys Compd., 582, 241 (2014).

    Article  CAS  Google Scholar 

  43. S. Jiang, C. Wang, M. He, J. Yu, Q. Tao, J. H. Dai, Z. X. Hu, and G. H. Cao, Physica C, 470, S456 (2010).

    Article  CAS  Google Scholar 

  44. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Solid State Comm., 150, 2069 (2010).

    Article  CAS  Google Scholar 

  45. V. V. Bannikov and A. L. Ivanovskii, Fiz. Tv. Tela, 54, No. 6, 1048 (2012).

    Google Scholar 

  46. V. V. Bannikov and A. L. Ivanovskii, JETP Lett., 96, No. 11, 735 (2012).

    Article  Google Scholar 

  47. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, J. Supercond. Nov. Magn., 25, 1509 (2012).

    Article  CAS  Google Scholar 

  48. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B, 44, 943 (1991).

    Article  CAS  Google Scholar 

  49. P. W. Anderson, Phys. Rev., 115, 2 (1959).

    Article  CAS  Google Scholar 

  50. K. Kenmochi, V. A. Dinh, K. Sato, A. Yanase, and H. Katayama-Yoshida, J. Phys. Soc. Jpn., 73, 2952 (2004).

    Article  CAS  Google Scholar 

  51. V. A. Dinh, M. Toyoda, K. Sato, and H. Katayama-Yoshida, J. Phys. Soc. Jpn., 75, 093705 (2006).

    Article  Google Scholar 

  52. K. Kenmochi, M. Seike, K. Sato, A. Yanase, and H. Katayama-Yoshida, Jpn. J. Appl. Phys., 43, L934 (2004).

    Article  CAS  Google Scholar 

  53. A. L. Ivanovskii, Uspekhi Fiz. Nauk, 177, No. 10, 1083 (2007).

    Article  Google Scholar 

  54. A. L. Ivanovskii and V. V. Bannikov, JETP Lett., 38, No. 22, 71 (2012).

    Google Scholar 

  55. H. Yanagi, S. Ohno, T. Kamiya, H. Hiramatsu, M. Hirano, and H. Hosono, J. Appl. Phys., 100, 033717 (2006).

    Article  Google Scholar 

  56. C. Ding, H. Man, C. Qin, et al., Phys. Rev. B, 88, 041102R (2013).

    Article  Google Scholar 

  57. X. Yang, Y. Li, C. Shen, B. Si, Y. Sun, Q. Tao, G. Cao, Z. Xu, and F. Zhang, Appl. Phys. Lett., 103, 022410 (2013).

    Article  Google Scholar 

  58. J. Lu, H. Man, C. Ding, Q. Wang, B. Yu, S. Guo, H. Wang, B. Chen, W. Han, C. Jin, Y. J. Uemura, and F. L. Ning; arXiv:1311.1304v1 (2013).

  59. V. V. Bannikov and A. L. Ivanovskii, JETP Lett., 98, No. 7, 448 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bannikov.

Additional information

Original Russian Text © 2015 V. V. Bannikov, A. L. Ivanovskii.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 1, pp. 155–170, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannikov, V.V., Ivanovskii, A.L. Novel magnetic materials based on semiconducting 1111 phases: Theory and experiment. J Struct Chem 56, 148–162 (2015). https://doi.org/10.1134/S0022476615010217

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615010217

Keywords

Navigation