Journal of Structural Chemistry

, Volume 56, Issue 1, pp 113–120 | Cite as

Effect of the nature of non-bridging donor atoms on the structure and magnetic properties of binuclear copper(II) complexes with heterocyclic azomethyne ligands

  • S. I. Levchenkov
  • I. N. Shcherbakov
  • L. D. Popov
  • A. I. Uraev
  • K. Yu. Suponitskii
  • A. A. Zubenko
  • A. M. Ionov
  • V. A. Kogan
Article

Abstract

Pyrazolate bridging binuclear copper(II) complex with a heterocyclic azomethyne ligand (a condensation product of 1,3-diaminopropanol-2 with 1-phenyl-3-methyl-4-formyl-5-mercaptopyrazole) is synthesized and structurally characterized. The structure of the complex is compared with the structure of its pyrazolone analogue. It is shown that for the 2J calculation the use of the previously optimized geometry rather than the geometry from the XRD data results in better agreement with the magnetochemical experiment.

Keywords

azomethines complex compounds X-ray crystallographic analysis magnetochemistry exchange interaction density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Kogan, V. V. Lukov, and I. N. Shcherbakov, Russ. J. Coord. Chem., 36, No. 6, 401 (2010).CrossRefGoogle Scholar
  2. 2.
    I. Negodaev, C. De Graaf, R. Caballol, and V. V. Lukov, Inorg. Chim. Acta, 375, No. 1, 166 (2011).CrossRefGoogle Scholar
  3. 3.
    A. G. Starikov, V. A. Kogan, V. V. Lukov, et al., Russ. J. Coord. Chem., 35, No. 8, 616 (2009).CrossRefGoogle Scholar
  4. 4.
    M. F. Charlot, O. Kahn, S. Jeannin, and Y. Jeannin, Inorg. Chem., 19, No. 5, 1410 (1980).CrossRefGoogle Scholar
  5. 5.
    E. Ruiz, P. Alemany, S. Alvarez, and J. Cano, Inorg. Chem., 36, No. 17, 3683 (1997).CrossRefGoogle Scholar
  6. 6.
    E. Ruiz, P. Alemany, S. Alvarez, and J. Cano, J. Am. Chem. Soc., 119, No. 6, 1297 (1997).CrossRefGoogle Scholar
  7. 7.
    Y. Nishida, M. Takeuchi, K. Takahashi, and S. Kida, Chem. Lett., 14, No. 5, 631 (1985).CrossRefGoogle Scholar
  8. 8.
    Y. Nishida and S. Kida, J. Chem. Soc., Dalton Trans., No. 12, 2633 (1986).Google Scholar
  9. 9.
    Y. Nishida and S. Kida, Inorg. Chem., 27, No. 3, 447 (1988).CrossRefGoogle Scholar
  10. 10.
    V. McKee, M. Zvagulis, and C. A. Reed, Inorg. Chem., 24, No. 19, 2914 (1985).CrossRefGoogle Scholar
  11. 11.
    Y.-M. Sun, L.-L. Wang, and J.-S. Wu, Transition Met. Chem., 33, No. 8, 1035 (2008).CrossRefGoogle Scholar
  12. 12.
    L.-L. Wang, Y.-M. Sun, Z.-N. Qi, and C.-B. Liu, J. Phys. Chem. A, 112, No. 36, 8418 (2008).CrossRefGoogle Scholar
  13. 13.
    C. T. Zeyrek, A. Elmali, and Y. Elerman, J. Mol. Struct. THEOCHEM, 680, Nos. 1–3, 159 (2004).CrossRefGoogle Scholar
  14. 14.
    E. Ruiz, J. Cano, S. Alvarez, and P. Alemany, J. Comput. Chem., 20, No. 13, 1391 (1999).CrossRefGoogle Scholar
  15. 15.
    I. Ciofini and C. A. Daul, Coord. Chem. Rev., 238/239, 187 (2003).CrossRefGoogle Scholar
  16. 16.
    I. de P. R. Moreira, R. Costa, M. Filatov, and F. Illas, J. Chem. Theory Comput., 3, No. 3, 764 (2007).CrossRefGoogle Scholar
  17. 17.
    E. Cremades, T. Cauchy, J. Cano, and E. Ruiz, Dalton Trans., No. 30, 5873 (2009).Google Scholar
  18. 18.
    K. V. Bozhenko, S. M. Aldoshin, V. I. Minkin, et al., Russ. Chem. Bull., Int. Ed., 59, No. 3, 489 (2010).CrossRefGoogle Scholar
  19. 19.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakovk, et al., Inorg. Chem. Commun., 17, 1 (2012).CrossRefGoogle Scholar
  20. 20.
    I. Ya. Kvitko and B. A. Porai-Koshits, Zhurn. Organ. Khimii, 5, No. 9, 1685 (1969).Google Scholar
  21. 21.
    SMART (Control) and SAINT (Integration) Software, Version 5.0, Bruker AXS Inc., Madison, WI (1997).Google Scholar
  22. 22.
    G. M. Sheldrik, SADABS, Program for Scanning and Correction of Area Detector Data, Göttingen University, Göttingen, Germany (2004).Google Scholar
  23. 23.
    G. M. Sheldrick, Acta Crystallogr. A, 64, No. 1, 112 (2008).CrossRefGoogle Scholar
  24. 24.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, No. 45, 11623 (1994).CrossRefGoogle Scholar
  25. 25.
    A. D. Becke, J. Chem. Phys., 98, No. 7, 5648 (1993).CrossRefGoogle Scholar
  26. 26.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter, 37, No. 2, 785 (1988).CrossRefGoogle Scholar
  27. 27.
    L. D. Popov, I. N. Shcherbakov, S. I. Levchenkov, et al., J. Coord. Chem., 61, No. 3, 392 (2008).CrossRefGoogle Scholar
  28. 28.
    I. N. Shcherbakov, S. I. Levchenkov, Yu. P. Tupolova, et al., Eur. J. Inorg. Chem., 2013, No. 28, 5033 (2013).Google Scholar
  29. 29.
    A. P. Ginsberg, J. Am. Chem. Soc., 102, No. 1, 111 (1980).CrossRefGoogle Scholar
  30. 30.
    L. Noodleman, C. Y. Peng, D. A. Case, and J.-M. Mouesca, Coord. Chem. Rev., 144, 119 (1995).Google Scholar
  31. 31.
    P. G. Lacroix and J.-C. Daran, J. Chem. Soc., Dalton Trans., No. 8, 1369 (1997).Google Scholar
  32. 32.
    T. Soda, Y. Kitagawa, T. Onishi, et al., Chem. Phys. Lett. 319, Nos. 3/4, 223 (2000).CrossRefGoogle Scholar
  33. 33.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT (2004).Google Scholar
  34. 34.
    G. A. Zhurko and D. A. Zhurko, Chemcraft version 1.6 (build 338); http://www.chemcraftprog.com.
  35. 35.
    L. Hennig, R. Kirmse, O. Hammerich, et al., Inorg. Chim. Acta, 234, Nos. 1/2, 67 (1995).CrossRefGoogle Scholar
  36. 36.
    J. C. Rasmussen, H. Toftlund, A. N. Nivorzhkin, et al., Inorg. Chim. Acta, 251, Nos. 1/2, 291 (1996).CrossRefGoogle Scholar
  37. 37.
    A. I. Uraev, I. S. Vasil’chenko, G. S. Borodkin, et al., Russ. Chem. Bull., Int. Ed., 54, No. 3, 633 (2005).CrossRefGoogle Scholar
  38. 38.
    V. A. Kogan and I. N. Shcherbakov, Ross. Khim. Zhurn., 48, No. 1, 69 (2004).Google Scholar
  39. 39.
    V. M. Leovac, G. A. Bogdanovic, L. S. Jovanovic, et al., J. Inorg. Biochem., 105, No. 11, 1413 (2011).CrossRefGoogle Scholar
  40. 40.
    H.-G. Li, Z.-Y. Yang, and D.-D. Qin, Inorg. Chem. Commun., 12, No. 6, 494 (2009).CrossRefGoogle Scholar
  41. 41.
    A. S. Burlov, A. S. Antsyshkina, G. G. Sadikov, et al., Russ. J. Gen. Chem., 82, No. 11, 1846 (2012).CrossRefGoogle Scholar
  42. 42.
    S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, et al., Inorg. Chim. Acta, 405, 169 (2013).CrossRefGoogle Scholar
  43. 43.
    A. I. Uraev, A. L. Nivorozhkin, G. I. Bondarenko, et al., Russ. Chem. Bull., Int. Ed., 49, No. 11, 1863 (2000).CrossRefGoogle Scholar
  44. 44.
    O. Kahn, Molecular Magnetism, VCH Publishers, New York (1993).Google Scholar
  45. 45.
    B. Bleaney and K. D. Bowers, Proc. R. Soc. London, Ser. A, 214, No. 1119, 451 (1952).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • I. N. Shcherbakov
    • 2
  • L. D. Popov
    • 2
  • A. I. Uraev
    • 2
  • K. Yu. Suponitskii
    • 3
  • A. A. Zubenko
    • 4
  • A. M. Ionov
    • 2
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Faculty of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  4. 4.North-Caucasian Zonal Research Veterinary InstituteNovocherkasskRussia

Personalised recommendations