Skip to main content
Log in

Structure of dimers of glycyrrhizic acid in water and their complexes with cholesterol: Molecular dynamics simulation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular dynamics simulation of dimers of glycyrrhizic acid (GA) arising from the spontaneous meeting of two GA molecules in water is performed. Shown that the molecules in the dimer are quite close to each other, there is no place between them where another molecule (including water molecule) could fit. The relatively stable structures of dimers are found, which are characterized by the specific values of angles between the terpene skeletons of GA molecules and sugar ends. Due to thermal motion, the spontaneous transitions between these structures occur. The insertion of a molecule of cholesterol in the solution showed that the associates formed from two GA molecules and one cholesterol molecule are, as a rule, one of stable GA dimers with the attached cholesterol molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Tolstikov, L. A. Boltina, R. M. Kondratenko, et al., Glycyrrhiza: Biodiversity, Chemistry, and Application in Medicine [in Russian], NP “Geo”, Academic Publishing House, Novosibirsk (2007).

    Google Scholar 

  2. T. G. Tolstikova, M. V. Khvostov, and A. O. Bryzgalov, Mini-Rev. Med. Chem., 9, 1317–1328 (2009).

    Article  CAS  Google Scholar 

  3. N. E. Polyakov and T. V. Leshina, Open Conf. Proc. J., 2, 64–72 (2011).

    Article  CAS  Google Scholar 

  4. V. A. Vavilin, N. F. Salakhutdinov, Yu. I. Ragino, N. E. Polyakov, M. B. Taraban, T. V. Leshina, E. M. Stakhneev, V. V. Lyakhovich, Yu. P. Nikitin, and G. A. Tolstikov, Biomed. Chem., 54, 301–313 (2008).

    CAS  Google Scholar 

  5. Yu. I. Ragin, V. A. Vavilin, N. F. Salakhutdinov, S. I. Makarov, E. M. Stakhneva, O. G. Safronova, Yu. P. Nikitin, and G. A. Tolstikov, Bull. Exp. Biol. Med., 145, 285–287 (2008).

    Google Scholar 

  6. N. E. Polyakov, V. K. Khan, and M. B. Taraban, J. Phys. Chem. B, 109, 24526–24530 (2005).

    Article  CAS  Google Scholar 

  7. N. E. Polyakov, T. V. Leshina, N. F. Salakhutdinov, et al., J. Phys. Chem. B, 110, 6991–6998 (2006).

    Article  CAS  Google Scholar 

  8. N. E. Polyakov, T. V. Leshina, N. F. Salakhutdinov, et al., Free Rad. Biol. Med., 40, 1804–1809 (2006).

    Article  CAS  Google Scholar 

  9. N. E. Polyakov, V. K. Khan, M. B. Taraban, et al., J. Phys. Chem. B, 112, 4435–4440 (2008).

    Article  CAS  Google Scholar 

  10. N. E. Polyakov, A. Magyar, and L. D. Kispert, J. Phys. Chem. B, 117, No. 35, 10173–10182 (2013).

    Article  CAS  Google Scholar 

  11. V. S. Kornievskaya, A. I. Kruppa, N. E. Polyakov, and T. V. Leshina, J. Incl. Phenom. Macrocycl. Chem., 60, 123–130 (2007).

    Article  Google Scholar 

  12. K. C. James and J. B. Stanford, J. Pharm. Pharmacol., 5, 445–450 (1962).

    Article  Google Scholar 

  13. R. J. Gilbert and K. C. James, J. Pharm. Pharmacol., 16, 394–399 (1964).

    Article  CAS  Google Scholar 

  14. E. Azaz and R. Segal, Pharm. Acta Helv., 55, 183–186 (1980).

    CAS  Google Scholar 

  15. M. Kondo, H. Minamino, and G. Okiyama, J. Soc. Cosmet. Chem., 37, 177–189 (1986).

    CAS  Google Scholar 

  16. M. Maskan, J. Food Process Eng., 39, 389–393 (1999).

    Article  Google Scholar 

  17. T. V. Romanenko and Yu. I. Murinov, J. Phys. Chem., 75, 1601–1604 (2001).

    Google Scholar 

  18. O. Yu. Gluschenko, N. E. Polyakov, and T. V. Leshina, Appl. Magn. Res., 41, 283–294 (2011).

    Article  CAS  Google Scholar 

  19. T.-T. Chang, M.-F. Sun, K.-C. Chen, et. al., Molec. Simulat., 37, No. 9, 804–811 (2011).

    Article  CAS  Google Scholar 

  20. A. V. Lekar, A. A. Milov, S. N. Borisenko, et al., Vestn. Yuzhn. Nauch. Tsentra RAN, 8, No. 2, 18–26 (2012).

    Google Scholar 

  21. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem., 26, No. 16, 1701–1718 (2005).

    Article  Google Scholar 

  22. W. G. Hoover, Phys. Rev. A, 31, 1695–1697 (1985).

    Article  Google Scholar 

  23. M. Parrinello and A. Rahman, J. Appl. Phys., 52, 7182 (1981).

    Article  CAS  Google Scholar 

  24. U. Essmann, L. M. Perera, L. Berkowitz, T. A. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys., 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  25. A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Oostenbrink, and A. E. Mark, J. Chem. Theory Comput., 7, No. 12, 4026–4037 (2011).

    Article  CAS  Google Scholar 

  26. http://www.compbio.biosci.uq.edu.au/atb/.

  27. F. M. Richards, Methods Enzymol., 115, 440–646 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Medvedev.

Additional information

Original Russian Text © 2015 M. V. Zelikman, A. V. Kim, N. N. Medvedev, O. Yu. Selyutina, N. E. Polyakov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 1, pp. 73–82, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelikman, M.V., Kim, A.V., Medvedev, N.N. et al. Structure of dimers of glycyrrhizic acid in water and their complexes with cholesterol: Molecular dynamics simulation. J Struct Chem 56, 67–76 (2015). https://doi.org/10.1134/S0022476615010102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615010102

Keywords

Navigation