Skip to main content
Log in

Internal rotation potential functions of an acryloyl fluoride molecule in the ground (S 0) and excited (S 1) electronic states

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural parameters of trans- and cis-isomers of an acryloyl fluoride molecule in the ground (S 0) and excited (S 1) electronic states are determined. The F(φ) function is expanded into the Fourier series. The internal rotation potential functions (IRPFs) of acryloyl fluoride in both electronic states are derived. To this end, torsional vibrational transition frequencies of both isomers of this molecule were used, which were obtained from the analysis of the vibrational structure Щf a high resolution UV spectrum of acryloyl fluoride vapor with regard to the geometry and energy difference (ΔH) of the isomers. The IRPF parameters V n of this molecule in the (S 0) state, which were derived based on the transition frequencies of torsional vibrations from the vibrational structure of the high resolution UV spectrum and the IR Fourier spectrum coincided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Glebova, L. N. Margolin, Yu. A. Pentin, and V. I. Tyulin, J. Struct.Chem., 17, No. 4, 603 (1976).

    Article  Google Scholar 

  2. L. A. Glebova, A. V. Abramenkov, L. N. Margolin, A. A. Zenkin, Yu. A. Pentin, and V. I. Tyulin, J. Struct. Chem., 20, No. 6, 884–889 (1979).

    Article  Google Scholar 

  3. L. A. Koroleva, V. I. Tyulin, V. K. Matveev, and Yu. A. Pentin, Vestn. Mosk. Univ., Ser. 2: Khim., 41, No. 1, 16 (2000).

    Google Scholar 

  4. L. A. Koroleva, V. I. Tyulin, V. K. Matveev, and Yu. A. Pentin, Russ. J. Phys. Chem. A, 83, No. 6, 1090 (2009).

    Google Scholar 

  5. L. A. Koroleva, V. I. Tyulin, V. K. Matveev, and Y. A. Pentin, Spectrochim. Acta Part A, 122, 609 (2014).

    Article  CAS  Google Scholar 

  6. J. R. Durig, Y. Li, and Y. Jin, Mol. Phys., 91, No. 3, 421 (1997).

    Article  CAS  Google Scholar 

  7. J. J. Keirns and R. F. Curl Jr., J. Chem. Phys., 48, No. 8, 3773 (1968).

    Article  CAS  Google Scholar 

  8. J. R. Durig, R. J. Berry, and P. Groner, J. Chem. Phys., 87, No. 11, 6303 (1987).

    Article  CAS  Google Scholar 

  9. L. A. Koroleva, V. I. Tyulin, V. K. Matveev, S. V. Krasnoshchekov, and Yu. A. Pentin, Russ. J. Phys. Chem. A, 81, No. 1, 40 (2007).

    Article  Google Scholar 

  10. L. A. Koroleva, V. I. Tyulin, V. K. Matveev, S. V. Krasnoshchekov, and Yu. A. Pentin, Russ. J. Phys. Chem. A, 83, No. 6, 1098 (2009).

    Google Scholar 

  11. P. D. Foster, J. A. Hodgeson, and R. F. Curl Jr., J. Chem. Phys., 45, 3760 (1966).

    Article  CAS  Google Scholar 

  12. E. A. Cherniak and C. C. Costain, J. Chem. Phys., 45, 104 (1966).

    Article  CAS  Google Scholar 

  13. L. Pierce and L. C. Krisher, J. Chem. Phys., 31, 875 (1959).

    Article  CAS  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2009).

    Google Scholar 

  15. V. I. Tyulin and V. K. Matveev, Russ. J. Phys. Chem. A, 73, No. 1, 92 (1999).

    CAS  Google Scholar 

  16. B. Saha, M. Ehara, and H. Nakatsuji, J. Chem. Phys., 125, 014316 (2006).

    Article  Google Scholar 

  17. A. V. Abramenkov, Russ. J. Phys. Chem. A, 69, 5851 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Koroleva.

Additional information

Original Russian Text © 2015 L. A. Koroleva, V. I. Tyulin, V. K. Matveev, Yu. A. Pentin.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 56, No. 1, pp. 34–40, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroleva, L.A., Tyulin, V.I., Matveev, V.K. et al. Internal rotation potential functions of an acryloyl fluoride molecule in the ground (S 0) and excited (S 1) electronic states. J Struct Chem 56, 27–33 (2015). https://doi.org/10.1134/S0022476615010059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615010059

Keywords

Navigation