Advertisement

Journal of Structural Chemistry

, Volume 55, Issue 8, pp 1627–1634 | Cite as

First principles study on proton transfer between amino acid side chains of histidine and aspartic acid in β-structure

  • M. SargolzaeiEmail author
  • M. Afshar
  • M.S. Sadeghi
  • H. Hamidian
Self-Organization in Molecular and Supramolecular Compounds

Abstract

We have demonstrated possibility of proton transfer between nitrogen atom of imidazole ring in histidine and oxygen atom of carboxylic group in aspartic residues inside peptide of Asp-Ala-His+ using density functional theory calculations. Our NBO and AIM analyzes have shown that the proton transfer takes place between side chain of histidine and aspartic acid residues through the hydrogen bond formation. Transition state structures of proton transfer reaction were calculated in gas and solution phases. The calculated reaction rates show that the proton transfer reaction rate in the gas phase is higher than solution phase. The ionization constant (pK a) value of the lysine residue in peptide was estimated to be 1.09 which is lower than intrinsic pK a value of lysine amino acid.

Keywords

ionization constants gibbs free energy DFT calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. Schowen, H. H. Limbach, G. S. Denisov, and R. L. Schowen, Biochim. Biophys. Acta, 1458, No. 1, 43–62 (2000).CrossRefGoogle Scholar
  2. 2.
    G. Schüürmann, M. Cossi, V. Barone, and J. Tomasi, J. Phys. Chem. A, 102, No. 33, 6706 (1998).CrossRefGoogle Scholar
  3. 3.
    H. Li. Jensen, A. D. Robertson, and P. A. Molina, J. Phys.Chem. A, 109, No. 30, 6634–6643 (2005).CrossRefGoogle Scholar
  4. 4.
    D. Roy and J. J. Dannenberg, Chem. Phys. Lett., 512, Nos. 4–6, 255–257 (2011).CrossRefGoogle Scholar
  5. 5.
    J. A. Plumleyand and J. J. Dannenberg, J. Am. Chem. Soc., 132, 1758 (2010).CrossRefGoogle Scholar
  6. 6.
    F. de Brito Mota and R. Rivelino, J. Mol. Struct., 776, Nos. 1–3, 53–59 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Ghosh, S. Mondal, A. Misra, and S. Dalai, J. Mol Struct., 805, Nos. 1–3, 133–141 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Mondal, D. S. Chowdhuri, S. Ghosh, A. Misra, and S. Dalai, J. Mol. Struct., 810, Nos. 1–3, 81–89 (2007).CrossRefGoogle Scholar
  9. 9.
    R. I. Najafabadi, M. R. Housaindokht, M. S. Sadeghi Googheri, M. Sargolzaei, and M. Izadyar, Int. J. Quantum Chem., 112, No. 14, 2675–2680 (2012).CrossRefGoogle Scholar
  10. 10.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT (2004).Google Scholar
  11. 11.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  12. 12.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, (1989).Google Scholar
  13. 13.
    S. Miertuš and E. T. Scrocco, J. Chem. Phys., 55, 117–129 (1981).Google Scholar
  14. 14.
    P. Hudáky and A. Perczel, J. Phys. Chem. A, 108, No. 29, 6195–6205 (2004).CrossRefGoogle Scholar
  15. 15.
    H. Eyring, J. Chem. Phys., 3, 107–115 (1935).CrossRefGoogle Scholar
  16. 16.
    E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett., 285, 170–173 (1998).CrossRefGoogle Scholar
  17. 17.
    A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, No. 6, 899–926 (1988).CrossRefGoogle Scholar
  18. 18.
    R. F. W. Bader, Atoms in Molecules: A. Quantum Theory, Oxford University Press, Oxford, UK (1990).Google Scholar
  19. 19.
    R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, USA (1994).Google Scholar
  20. 20.
    R. F. W. Bader, Chem. Rev., 91, 893–928 (1991).CrossRefGoogle Scholar
  21. 21.
    R. F. W. Bader, Acc. Chem. Res., 18, 9–15 (1985).CrossRefGoogle Scholar
  22. 22.
    Y. Nozaki and C. Tanford, Methods Enzymol., 11, 715–734 (1967).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. Sargolzaei
    • 1
    Email author
  • M. Afshar
    • 2
  • M.S. Sadeghi
    • 3
  • H. Hamidian
    • 4
  1. 1.Department of ChemistryShahrood University of TechnologyShahroodIran
  2. 2.Department of PhysicsIran University of Science and TechnologyNarmakTehran, Iran
  3. 3.Department of ChemistryIslamic Azad University, Science and ResearchSirjan BranchIran
  4. 4.Department of ChemistryIslamic Azad UniversityMarvdasht BranchIran

Personalised recommendations