Skip to main content
Log in

Structure of molecular complexes formed in aqueous solutions of trifluoroacetic acid

  • Self-Organization in Molecular and Supramolecular Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Optimized structures and vibration frequencies of H-bonded complexes formed by one or two molecules of CF3COOH (or CF3COO ion) with water molecules and the monomers and dimers of formic, acetic, trifluoroacetic, and tribromoacetic acids were calculated using density functional theory (B3LYP/6–31++G(d,p)). The results were compared with available experimental data on the vibrational spectra and equilibrium composition of the CF3COOH-H2O system and the acids listed above. The structure of the hydrated forms of CF3COOH molecules and CF3COO anions which are present in aqueous solutions of trifluoroacetic acid was determined. In these solutions at concentrations 100 % > [CF3COOH] > 35 %, (CF3COOH)2 ·(H2O)2 cyclic tetramers form in which the acid and water molecules are arranged pairwise side-by-side, and starting at 75 % CF3COOH, CF3COO·(H2O)2 cyclic dihydrates of the anion are formed. The average strength of the hydrogen bonds in these heteroassociates is ∼9–10 kcal/mol, and the properties and mutual position of their constituent molecules almost completely determine their vibrational spectra in solution. This approach provides a good reproduction of the IR and Raman spectra of molecular complexes, that have a cyclic structure and an average H-bond energy not less than 7 kcal/mole, in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Fuson, M.-L. Joisen, E. A. Jones, and J. R. Lawson, J. Chem. Phys., 20, No. 10, 1627 (1952).

    Article  CAS  Google Scholar 

  2. D. J. Frurip, L. A. Curtiss, and M. Blander, J. Am. Chem. Soc., 102, No. 8, 2610 (1980).

    Article  CAS  Google Scholar 

  3. Y. Marechal, J. Chem. Phys., 87, No. 11, 6344 (1987).

    Article  CAS  Google Scholar 

  4. D. Priem, T.-K. Ha, and A. Bauder, J. Chem. Phys., 113, No. 1, 169 (2000).

    Article  CAS  Google Scholar 

  5. B. Ouyang, T. G. Starkey, and B. J. Howard, J. Phys. Chem. A., 111, No. 28, 6165 (2007).

    Article  CAS  Google Scholar 

  6. B. Ouyang and B. J. Howard, J. Phys. Chem. A., 112, No. 36, 8208 (2008).

    Article  CAS  Google Scholar 

  7. L. George and W. Sander, Spectrochim. Acta A, 60, No. 13, 3225 (2004).

    Article  Google Scholar 

  8. A. Olbert-Majkut, J. Ahokas, J. Lundell, and M. Pettersson, Chem. Phys. Lett., 468, No. 4, 176 (2009).

    Article  CAS  Google Scholar 

  9. A. Olbert-Majkut, J. Ahokas, J. Lundell, and M. Pettersson, J. Raman Spectr., 42, No. 8, 1670 (2011).

    Article  CAS  Google Scholar 

  10. F. Ito, Chem. Phys., 382, No. 1, 52 (2011).

    Article  CAS  Google Scholar 

  11. J. C. Lassegues and J. W. White, Molecular Motions in Liquids, Ed. J. Lascombe, D. Reidel Publishing Company, Dordrecht-Holland (1974), p. 439–459.

  12. W. W. Rudolph and G. Irmer, Spectrochim. Acta A, 90, No. 1, 165 (2012).

    Article  CAS  Google Scholar 

  13. F. Màrques, M. I. Suero, J. C. Otero, and J. I. Marcos, Spectr. Lett., 25, No. 6, 821 (1992).

    Article  Google Scholar 

  14. L. M. Sverdlov, M. A. Kovner, and E. P. Kraynov, Vibrational spectra of polyatomic molecules, Nauka, Moscow (1970).

    Google Scholar 

  15. J.-J. Max and C. Chapados, J. Phys. Chem. A., 108, No. 16, 3324 (2004).

    Article  CAS  Google Scholar 

  16. N. G. Zarakhani, L. A. Lobanov, and N. P. Vorobyova, Zh. Fiz. Khim., 45, No. 6, 1488 (1971).

    CAS  Google Scholar 

  17. S. Perelygin and A. M. Afanas’ieva, Zh. Struktur. Khim., 14, No. 6, 1196 (1973).

    Google Scholar 

  18. V. D. Maiorov, N. B. Librovich, and M. I. Vinnik, Zh. Fiz. Khim., 53, No. 4, 1036 (1979).

    CAS  Google Scholar 

  19. G. S. Denisov, A. L. Smolyanskii, and M. I. Sheikh-Zade, Zh. Prikl. Spektr., 34, No. 3, 470 (1981).

    CAS  Google Scholar 

  20. N. S. Golubev and G. S. Denisov, Zh. Prikl. Spektr., 37, No. 1, 265 (1982).

    CAS  Google Scholar 

  21. V. D. Maiorov, I. S. Kislina, G. I. Voloshenko, and N. B. Librovich, Izv. AN. Ser. Khim., No. 9, 1537 (2000).

    Google Scholar 

  22. V. D. Maiorov, I. S. Kislina, G. I. Voloshenko and N. B. Librovich, Khim Fiz., 26, No. 5, 62 (2007).

    CAS  Google Scholar 

  23. S. F. Bureiko, N. S. Golubev, G. S. Denisov, S. Yu. Kucherov, and P. M. Tolstoi, Russ. J. Gen. Chem., 75, No. 11, 1821 (2005).

    Article  CAS  Google Scholar 

  24. I. Yu. Skrepleva, G. I. Voloshenko, N. B. Librovich, V. D. Maiorov, M. V. Vishnetskaya, and M. Ya. Mel’nikov, Vestn. Mosk. Univ. Ser. Khim., 52, No. 4, 281 (2011).

    CAS  Google Scholar 

  25. W. W. Rudolph and G. Irmer, Spectrochim. Acta A, 79, No. 7, 1483 (2011).

    Article  CAS  Google Scholar 

  26. F. Ito, Comput. Theor. Chem., 1016, 48 (2013).

    Article  CAS  Google Scholar 

  27. D. Wei, J.-F. Truchon, S. Sirois, and D. Salahub, J. Chem. Phys., 116, No. 14, 6028 (2000).

    Article  Google Scholar 

  28. S. Aloisio, P. E. Hintze, and V. Vaida, J. Phys. Chem. A, 106, No. 2, 363 (2002).

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, M. A. Keith, A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98 (Revision A.1), Gaussian, Inc., Pittsburgh PA (1998).

    Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, GAUSSIAN 09 (Revision A.02), Gaussian, Inc., Wallingford CT (2009).

    Google Scholar 

  31. G. V. Yukhnevich, Kristallografiya, 55, No. 3, 412 (2010).

    Google Scholar 

  32. E. G. Tarakanova and G. V. Yukhnevich, Zh. Struktur. Khim., 49, No. 4, 707 (2008).

    Google Scholar 

  33. E. G. Tarakanova and G. V. Yukhnevich, Izv. AN., Ser. Khim., No. 1, 79 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Tarakanova.

Additional information

Original Russian Text © 2013 E. G. Tarakanova, G. V. Yukhnevich.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, Supplement 2, pp. S237–S246, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakanova, E.G., Yukhnevich, G.V. Structure of molecular complexes formed in aqueous solutions of trifluoroacetic acid. J Struct Chem 55, 1409–1418 (2014). https://doi.org/10.1134/S0022476614080058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614080058

Keywords

Navigation