Skip to main content
Log in

Interpenetration of three-periodic networks in crystal structures: Description and classification methods, geometrical-topological conditions of implementation

  • The Bridging and Bonding Role of Crystallography
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This review describes the current state of studies on the phenomenon of interpenetration of framework groups in crystal structures. The generally accepted terminology used in the description of topology of interpenetrating motifs, symmetric and topological properties of interpenetrating systems is given. The main advances of crystal chemistry in the systematization of interpenetrating structures are elucidated. It is noted that the major trend in the crystal chemistry of interpenetration is the development of methods for the topological classification of the entanglements of interpenetrating groups and the search for the regularities of their implementation in crystalline substances. The main ways of the formation of interpenetrating structures, the appearing here geometrical-topological restrictions, and also the effect of stereochemical factors and synthesis conditions on the possibility of interpenetration are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Well, Acta Cryst., No. 7, 535 (1954).

    Google Scholar 

  2. A. F. Well, Acta Cryst., No. 7, 842 (1954).

    Google Scholar 

  3. A. F. Well, Acta Cryst., No. 7, 849 (1954).

    Google Scholar 

  4. A. F. Well, Acta Cryst., No. 8, 32 (1955).

    Google Scholar 

  5. A. F. Well, Acta Cryst., B25, 1711 (1969).

    Article  Google Scholar 

  6. A. F. Well, Three-dimensional nets and polyhedra, Wiley-Interscience, New York (1977).

    Google Scholar 

  7. A.F. Wells, Structural Inorganic Chemistry, v. 1–3, 5th Edition, Oxford University Press, Oxford (1984).

    Google Scholar 

  8. S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 37, No. 11, 1460 (1998).

    Article  Google Scholar 

  9. S. R. Batten, Cryst. Eng. Comm., 3, No. 18, 67 (2001).

    Article  Google Scholar 

  10. V. A. Blatov, L. Carlucci, G. Ciani, and D. M. Proserpio, Cryst. Eng. Comm., 6, 377 (2004).

    Article  CAS  Google Scholar 

  11. I. A. Baburin, V. A. Blatov, L. Carlucci, et al., J. Solid State Chem., 178, 2452 (2005).

    Article  CAS  Google Scholar 

  12. E. Koch, W. Fischer, and H. Sowa, Acta Cryst., A62, 152 (2006).

    Article  CAS  Google Scholar 

  13. I. A. Baburin, V. A. Blatov, L. Carlucci, et al., Cryst. Growth Des., 8, No. 2, 519 (2008).

    Article  CAS  Google Scholar 

  14. I. A. Baburin, V. A. Blatov, L. Carlucci, et. al., Cryst. Eng. Comm., 10, No. 12, 1822 (2008).

    Article  CAS  Google Scholar 

  15. S. R. Batten, Topology and interpenetration, in: Metal-Organic Frameworks: Design and Application, L. R. MacGillivray (ed.), John Wiley & Sons, Hoboken (2010).

    Google Scholar 

  16. E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov, and D. M. Proserpio, Cryst. Eng. Comm., 13, No. 12, 3947 (2011).

    Article  CAS  Google Scholar 

  17. S. R. Batten, Interpenetration, in: Supramolecular Chemistry: From Molecules to Nanomaterials, J. W. Steed and P. A. Gale (eds.), John Wiley & Sons, New York (2012).

    Google Scholar 

  18. S.-Y. Zhang, Z. Zhang, and M. J. Zaworotko, Chem. Commun., 49, 9700 (2013).

    Article  CAS  Google Scholar 

  19. H.-L. Jiang, T. A. Makal, and H.-C. Zhou, Coord. Chem. Rev., 257, No. 15/16, 2232 (2013).

    Article  CAS  Google Scholar 

  20. G. K. Kole and J. J. Vittal, Chem. Soc. Rev., 42, No. 4, 1755 (2013).

    Article  CAS  Google Scholar 

  21. J. H. Park, W. R. Lee, Y. Kim, et. al., Cryst. Growth Des., 14, No. 2, 699 (2014).

    Article  CAS  Google Scholar 

  22. V. A. Blatov, Acta Cryst., A62, 356 (2006).

    Article  CAS  Google Scholar 

  23. V. A. Blatov and D. M. Proserpio, Periodic-Graph Approaches in Crystal Structure Prediction, in: Modern Methods of Crystal Structure Prediction, A. R. Oganov (ed.), Wiley-VCH, Weinheim (2011).

    Google Scholar 

  24. S. F. Radaev, L. A. Muridian, L. F. Malakhova, et al., Kristallografiya, 34, No. 6, 1400 (1989).

    CAS  Google Scholar 

  25. M. Li, D. Li, M. O’Keeffe, and O. M. Yaghi, Chem. Rev., 114, No. 2, 1343 (2014).

    Article  CAS  Google Scholar 

  26. J. Krogh-Moe, Acta Cryst., B30, 747 (1974).

    Article  Google Scholar 

  27. J. Krogh-Moe, Acta Cryst., B28, 168 (1972).

    Article  Google Scholar 

  28. N. Penin, L. Seguin, M. Touboul, and G. Nowogrocki, J. Solid State Chem., 161, 205 (2001).

    Article  CAS  Google Scholar 

  29. W. E. Klee, Cryst. Res. Technol., 39, No. 11, 959 (2004).

    Article  CAS  Google Scholar 

  30. E. A. Lord, A. L. Mackay, and S Ranganathan., New Geometries for New Materials, Cambridge University Press, Cambridge (2006).

    Google Scholar 

  31. V. A. Blatov, J. Struct. Chem., 50, 160 (2009).

    Article  Google Scholar 

  32. M. O’Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, Acc. Chem. Res. 41, No. 12, 1782 (2008), http://rcsr.anu.edu.au/.

    Article  Google Scholar 

  33. O. Delgado-Friedrichs and M. O’Keeffe, J. Solid State Chem., 178, No. 8, 2480 (2005).

    Article  CAS  Google Scholar 

  34. W. Fisher, Z. Kristallogr., 133, 18 (1971).

    Article  Google Scholar 

  35. S. T. Hyde, O. Delgado-Friedrichs, S. J. Ramsden, and V. Robins,, Solid State Sci., 8, P. 740 (2006), http://epinet.anu.edu.au

    Article  CAS  Google Scholar 

  36. S. J. Ramsden, V. Robins, and S. T. Hyde, Acta Cryst., A65, 81 (2009).

    Article  Google Scholar 

  37. V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, and D. M. Proserpio, Acta Cryst., A63, 418 (2007).

    Article  Google Scholar 

  38. L. Carlucci, G. Ciani, and D. M. Proserpio, Coord. Chem. Rev., 246, 247 (2003).

    Article  CAS  Google Scholar 

  39. T. R. Shattock, P. Vishweshwar, Z. Wang, and M. J. Zaworotko, Cryst. Growth Des., 5, 2046 (2005).

    Article  CAS  Google Scholar 

  40. H. Wu, J. Yang, Z.-M. Su, et al., J. Am. Chem. Soc., 133, 11406 (2011).

    Article  CAS  Google Scholar 

  41. W. Fisher and E. Koch, Acta Cryst., A32, 225 (1976).

    Article  Google Scholar 

  42. E. Koch, W. Fischer, and H. Sowa, Acta Cryst., A62, 152 (2006).

    Article  CAS  Google Scholar 

  43. E. V. Alexandrov, V. A. Blatov, and D. M. Proserpio, Acta Cryst., A68, No. 4, 484 (2012).

    Article  Google Scholar 

  44. R. S. Forgan, J.-P. Sauvage, and J. F. Stoddart, Chem. Rev., 111, No. 9, 5434 (2011).

    Article  CAS  Google Scholar 

  45. Y. M. Chow and D. Britton, Acta Cryst., B30, 1117 (1974).

    Article  Google Scholar 

  46. S. Ferlay, S. Koenig, and M. W. Hosseini, et al., Chem. Commun., No. 3, 218 (2002).

    Google Scholar 

  47. L.-J. Chen, X.-Y. Wu, Q.-G. Zhai, et al., Inorg. Chem. Commun., 10, 1457 (2007).

    Article  CAS  Google Scholar 

  48. A. M. P. Peedikakkal, and J. J. Vittal, Cryst. Growth Des., 8, 375 (2008).

    Article  CAS  Google Scholar 

  49. R. P. Davies, R. J. Less, P. D. Lickiss, et al., Inorg. Chem., 47, 9958 (2008).

    Article  CAS  Google Scholar 

  50. G. Glover, N. Gerasimchuk, R. Biagioni, and K. V. Domasevitch, Inorg. Chem., 48, 2371 (2009).

    Article  CAS  Google Scholar 

  51. P. E. Ryan, C. Lescop, D. Laliberte, et al., Inorg. Chem., 48, 2793 (2009).

    Article  CAS  Google Scholar 

  52. K.-B. Wang, Y. Wang, and Y.-C. Chen, Chin. J. Struct. Chem., 28, 590 (2009).

    Google Scholar 

  53. P. Wei, X.-W. Li, and G. H. Robinson, Chem. Commun., No. 14, 1287 (1999).

    Google Scholar 

  54. S. R. Halper and S. M. Cohen, Inorg. Chem., 44, 486 (2005).

    Article  CAS  Google Scholar 

  55. J. Yang, J. Liu, X. Wang, et al., Cryst. Eng. Comm., 15, 10435 (2013).

    Article  CAS  Google Scholar 

  56. O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, Phys. Chem. Chem. Phys., 9, No. 9, 1035 (2007).

    Article  CAS  Google Scholar 

  57. M. O’Keeffe, Phys. Chem. Chem. Phys., 12, No. 30, 8580 (2010).

    Article  Google Scholar 

  58. L. J. Shields, Chem. Soc., Faraday Trans., 81, No. 2, 1 (1985).

    Article  CAS  Google Scholar 

  59. J. Y. Lee, L. Pan, S. P. Kelly, et al., Adv. Mater., 17, 2703 (2005).

    Article  CAS  Google Scholar 

  60. G. Park, H. Kim, G. H. Lee, et al., Bull. Korean Chem. Soc., 27, 443 (2006).

    Article  CAS  Google Scholar 

  61. S. Adak, L. L. Daemen, M. Hartl, et al., J. Solid State Chem., 184, No. 11, 2854 (2011).

    Article  CAS  Google Scholar 

  62. B. F. Hoskins, R. Robson, and N. V. Y. Scarlett, J. Chem. Soc., Chem. Commun., 18, 2025 (1994).

    Article  Google Scholar 

  63. J. Lefebvre, D. Chartrand, and D. B. Leznoff, Polyhedron, 26, 2189 (2007).

    Article  CAS  Google Scholar 

  64. T. Niu, J. Lu, X. Wang, et al., Inorg. Chem., 37, 5324 (1998).

    Article  CAS  Google Scholar 

  65. K. Yunlu, N. Hock, and R. D. Fischer, Angew. Chem., Int. Ed. Engl., 24, 879 (1985).

    Article  Google Scholar 

  66. U. Behrens, A. K. Brimah, T. M. Soliman, et al., Organometallics, 11, 1718 (1992).

    Article  CAS  Google Scholar 

  67. S.-M. Peng and D.-S. Liaw, Inorg. Chim. Acta, 113, L11 (1986).

    Article  CAS  Google Scholar 

  68. C.-P. Cui, P. Lin, and W.-X. Du, Inorg. Chem. Commun., 4, 444 (2001).

    Article  CAS  Google Scholar 

  69. Y.-Y. Qin, J. Zhang, Z.-J. Li, et al., Chem. Commun., 22, 2532 (2008).

    Article  Google Scholar 

  70. Y. Takashima, C. Bonneau, S. Furukawa, et al., Chem. Commun., 46, 4142 (2010).

    Article  CAS  Google Scholar 

  71. H. Yang, L. Li, J. Wu, et al., Chem.-Eur. J., 15, 4049 (2009).

    Article  CAS  Google Scholar 

  72. H. Zhou, K. C. Strates, M. A. Munoz, et al., Chem. Mater., 19, 2238 (2007).

    Article  CAS  Google Scholar 

  73. A. Galet, M. C. Munoz, A. B. Gaspar, and J. A. Real, Inorg. Chem., 44, 8749 (2005).

    Article  CAS  Google Scholar 

  74. X. Bu, T. E. Gier, and G. D. Stucky, Acta Cryst., C52, 14 (1996).

    CAS  Google Scholar 

  75. G. Thiele, J. Grossmann, and A. W. Purzer, Z. Naturforsch., B41, 1346 (1986).

    Google Scholar 

  76. T. Kitazawa, S.-I. Nishikiori, R. Kuroda, and T. J. Iwamoto, Chem. Soc., Dalton Trans., No. 7, 1029 (1994).

    Google Scholar 

  77. T. Kitazawa, J. Mater. Chem., 8, 671 (1998).

    Article  CAS  Google Scholar 

  78. B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 112, 1546 (1990).

    Article  CAS  Google Scholar 

  79. D. Williams, B. Pleune, K. Leinenweber, and J. Kouvetakis, J. Solid State Chem., 159, 244 (2001).

    Article  CAS  Google Scholar 

  80. A. L. Goodwin and C. J. Kepert, Phys. Rev. Phys., B71, 140301 (2005).

    Article  Google Scholar 

  81. D. Williams, B. Pleune, K. Leinenweber, and J. Kouvetakis, J. Solid State Chem., 159, 244 (2001).

    Article  CAS  Google Scholar 

  82. C. M. Kareis, S. H. Lapidus, P. W. Stephens, and J. S. Miller, Inorg. Chem., 51, No. 10, 3046 (2012).

    Article  CAS  Google Scholar 

  83. G. S. Zhdanov, Dok. Akad. Nauk SSSR, 31, 352 (1941).

    CAS  Google Scholar 

  84. H. Yuge and T. Iwamoto, J. Chem. Soc., Dalton Trans., 18, 2841 (1993).

    Article  Google Scholar 

  85. S. Li, K. Tang, and F.-L. Zhang, Acta Cryst., E66, M108 (2010).

    Google Scholar 

  86. X. Pu, X. Jiang, Y. Wei, Y. Li, and P. Yang, Acta Cryst., 61, M1393 (2005).

    CAS  Google Scholar 

  87. J. Pickardt and B. Z. Staub, Naturforsch., B50, 1517 (1995).

    Google Scholar 

  88. Y.A. Hua, L.R. Qin, Z. Hu, et al., Cryst. Eng. Comm., 12, 1382 (2010).

    Article  Google Scholar 

  89. M. J. Katz, T. Ramnial, H.-Z. Yu, and D. B. Leznoff, J. Am. Chem. Soc., 130, No. 32, 10662 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Alexandrov.

Additional information

Original Russian Text © 2014 E. V. Alexandrov, V. A. Blatov, D. M. Proserpio.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, Supplement 1, pp. S126–S144, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, E.V., Blatov, V.A. & Proserpio, D.M. Interpenetration of three-periodic networks in crystal structures: Description and classification methods, geometrical-topological conditions of implementation. J Struct Chem 55, 1308–1325 (2014). https://doi.org/10.1134/S0022476614070130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614070130

Keywords

Navigation