Skip to main content
Log in

Investigation of solvent effects on the stability and 15N NMR shielding of hallucinogenic harmine using the PCM model and NBO interpretation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) and Tomasi’s polarized continuum model (PCM) are applied for the investigation of the solvent structure and its dielectric constant effects on the relative stability and nuclear magnetic resonance (NMR) tensors of hallucinogenic harmine. All of the used computational methods indicate that the structural stability in protic polar solvents is higher than that in aprotic polar and nonpolar solvents, and the most stable structure was observed in methanol. Also, the natural bond orbital (NBO) interpretation demonstrates that with an increase in the solvent dielectric constant the resonance energy for LP(N9) → σ* and π* interactions of the strutural pyrrole ring increases while the LP (N9) occupancy decreases, and the highest resonance energy and the lowest occupancy are observed in water and methanol. On the other hand, NMR calculations show that there are the lowest values of Δσdir in water and methanol media for both nitrogen nuclei of the harmine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Venault and G. Chapouthier, Sci. World J., 7, 204–223 (2007).

    Article  CAS  Google Scholar 

  2. Y. Li, R. Sattler, E. J. Yang, A. Nunes, Y. Ayukawa, S. Akhtar, G. Ji, P. W. Zhang, and J. D. Rothstein, Neuropharmacol., 60, 1168 (2011).

    Article  CAS  Google Scholar 

  3. M. M. Airaksinen and I. Kari, Med. Biol., 59, 21 (1981).

    CAS  Google Scholar 

  4. O. Beck and K. F. Faull, Biochem. Pharmacol., 35, 2636 (1986).

    Article  CAS  Google Scholar 

  5. P. W. Coddling, Can. J. Chem., 61, 529 (1983).

    Article  Google Scholar 

  6. S. Stole, Life Sci., 65, 1943 (1999).

    Article  Google Scholar 

  7. D. I. Brierley and C. Davidson, Prog. Neuropsychopharmacol Biol. Psychiatry, 39, 263 (2012).

    Article  CAS  Google Scholar 

  8. K. Patel, M. Gadewar, R. Tripathi, S. K. Prasad, and D. K. Patel, Asian. Pac. J. Trop. Biomed., 2, 660 (2012).

    Article  CAS  Google Scholar 

  9. R. Cao, W. Fan, L. Guo, Q. Ma, G. Zhang, J. Li, X. Chen, Z. Ren, and L. Qiu, Eur. J. Med. Chem., 60, 135 (2013).

    Article  CAS  Google Scholar 

  10. A. Ahmad, K. A. Khan, S. Sultana, B. S. Siddiqui, B. Begum, S. Faizi, and S. Siddiqui, J. Ethnopharmacol., 35, 289 (1992).

    Article  CAS  Google Scholar 

  11. M. C. Pietrogrande, P. A. Borea, G. Lodi, and C. Bighi, Chromatographia, 23, 713 (1987).

    Article  CAS  Google Scholar 

  12. K. T. Douglas, R. K. Sharma, J. F. Walmsley, and R. C. Hider, Mol. Pharmacol., 23, 614 (1983).

    CAS  Google Scholar 

  13. T. R. Bosin and K. F. Faull, J. Chromatogr., 428, 229 (1988).

    Article  CAS  Google Scholar 

  14. F. Lelievre, C. Yan, R. N. Zare, and P. Gareil, J. Chromatogr. A, 723, 145 (1996).

    Article  Google Scholar 

  15. P. Prognon, A. Kasselouri, M. C. Desroches, and G. Mahuzier, Analusis, Luminescence Spectroscopy: Applications and Recent Trends, 28, 664 (2000).

    CAS  Google Scholar 

  16. H. J. Schneider, F. Hacket, V. Rüdiger, and H. Ikeda, Chem. Rev., 98, 1755 (1998).

    Article  CAS  Google Scholar 

  17. M. Zubiaur and C. Jaime, J. Org. Chem., 65, 8139 (2000).

    Article  CAS  Google Scholar 

  18. L. Martin, M. A. Martin, and B. del Castillo, Analyst., 122, 45 (1997).

    Article  CAS  Google Scholar 

  19. O. I. Tarzi and R. Erra-Balsells, J. Photochem. Photobiol. B, 80, 29 (2005).

    Article  CAS  Google Scholar 

  20. O. I. Tarzi and R. Erra-Balsells, J. Photochem. Photobiol. B, 82, 79 (2006).

    Article  CAS  Google Scholar 

  21. J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch, J. Phys. Chem., 100, 16098 (1996).

    Article  CAS  Google Scholar 

  22. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Reinhold NBO, Version 3.1 (1998).

    Google Scholar 

  23. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988).

    Article  CAS  Google Scholar 

  24. R. Cammi, B. Mennucci, and Tomasi, J. Chem. Phys., 110, 7627 (1999).

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr., K. N. Kudin, J. C. Burant, et al., GAUSSIAN, Revision C.2, Gaussian, Inc., Wallingford, CT (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tahan.

Additional information

Original Russian Text © 2014 A. Tahan, N. Ahmadinejad.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 55, No. 5, pp. 883–888, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahan, A., Ahmadinejad, N. Investigation of solvent effects on the stability and 15N NMR shielding of hallucinogenic harmine using the PCM model and NBO interpretation. J Struct Chem 55, 837–842 (2014). https://doi.org/10.1134/S0022476614050060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614050060

Keywords

Navigation