Skip to main content
Log in

An algorithm to identify the existence and reproducibly obtain single crystals of salts and mixed crystals of amino acids suitable for single crystal XRD and Raman spectroscopy experiments

  • Proceedings of the Conference “Methods for Studying the Composition and Structure of Functional Materials,” October 21–25, 2013, Novosibirsk
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

An algorithm is proposed to reproducibly obtain single crystals of salts and mixed crystals of amino acids with dicarboxylic acids and other small organic molecules. The resulting crystals are of high quality and have good faceting, which makes them suitable for single crystal XRD and Raman spectroscopic (including polarized radiation) experiments. The ease of the implementation and the possibility to reproduce the crystallization using equipment and materials that are available at virtually every laboratory are the hallmarks of the proposed algorithm, which involves two stages of work. During the first stage, the original components are screened, quickly and easily, to find new phases. The aim of the second stage is to obtain single crystals that meet the requirements of different research methods. An ideal case is the one whereby it is possible to control the size of well-faceted spaced apart crystals that grow within a few hours and are easy to separate from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Shan and M. J. Zaworotko, Drug Discov. Today, 13, Nos. 9/10, 440–446 (2008).

    Article  CAS  Google Scholar 

  2. B. S. Sekhon, Ars Pharmaceutica, 50, No.3, 99–117 (2009).

    Google Scholar 

  3. R. Chadha, A. Saini, P. Arora, et al., Crit. Rev. Ther. Drug Carrier Syst., 29, No.3, 183–218 (2012).

    Article  CAS  Google Scholar 

  4. G. A. Patrick Stahly, Cryst. Growth Des., 9, No.10, 4212–4229 (2009).

    Article  CAS  Google Scholar 

  5. R. Thakuria, A. Delori, W. Jones, et al., Int. J. Pharm., 453, No.1, 101–125 (2013).

    Article  CAS  Google Scholar 

  6. N. Qiao, M. Li, W. Schlindwein, et al., Int. J. Pharm., 419, Nos. 1/2, 1–11 (2011).

    Article  CAS  Google Scholar 

  7. G. Bruni, M. Maietta, L. Maggi, et al., J. Pharm. Sci., 102, No.11, 4079–4086 (2013).

    Article  CAS  Google Scholar 

  8. S. L. Childs, P. Kandi, and S. R. Lingireddy, Mol. Pharm., 10, No.8, 3112–3127 (2013).

    Article  CAS  Google Scholar 

  9. A. J. Smith, P. Kavuru, K. K. Arora, et al., Mol. Pharm., 10, No.8, 2948–2961 (2013).

    Article  CAS  Google Scholar 

  10. C. C. Sun, Expert Opinion on Drug Delivery, 10, No. 2, 201–213 (2013).

    Article  CAS  Google Scholar 

  11. P. V. Patel, H. Brahmbhatt, U. M. Upadhyay, et al., Int. J. Pharm. Pharm. Sci., 16, No.1, 140–148 (2012).

    CAS  Google Scholar 

  12. N. Huang and N. Rodríguez-Hornedo, CrystEngComm., 13, No.17, 5409–5422 (2011).

    Article  CAS  Google Scholar 

  13. C. H. Görbitz, J. Mol. Struct., 775, Nos. 1–3, 9–17 (2006).

    Article  Google Scholar 

  14. C. H. Görbitz, B. Dalhus, and G. M. Day, Phys. Chem. Chem. Phys., 12, No.30, 8466–8477 (2010).

    Article  Google Scholar 

  15. C. G. Suresh and M. Vijayan, Int. J. Pept. Protein Res., 22, No.2, 129–143 (1983).

    Article  CAS  Google Scholar 

  16. S. N. Vinogradov, Int. J. Pept. Protein Res., 14, No.4, 281–289 (1979).

    Article  CAS  Google Scholar 

  17. N. Vijayan, G. Bhagavannarayana, K. K. Maurya, et al., Int. J. Light Electron Opt., 123, No.7, 604–608 (2012).

    Article  CAS  Google Scholar 

  18. S. Suresh, Int. J. Light Electron Opt., 1, No.3, 131–140 (2012).

    Google Scholar 

  19. V. V. Lemanov, Phys. Solid State, 54, No.9, 1841/1842 (2012).

    Google Scholar 

  20. J. A. Gonzalo and L. Guerra-Menendez, Ferroelectrics Letters Section, 36, Nos. 5/6, 129–132 (2009).

    Article  CAS  Google Scholar 

  21. A. M. Petrosyan, R. P. Sukiasyan, and H. A. Karapetyan, J. Cryst. Growth, 213, No.1, 103–111 (2000).

    Article  CAS  Google Scholar 

  22. M. Fleck and A. M. Petrosyan, J. Cryst. Growth, 312, No.15, 2284–2290 (2010).

    Article  CAS  Google Scholar 

  23. T. Rager and R. Hilfiker, Cryst. Growth Des., 10, No.7, 3237–3241 (2010).

    Article  CAS  Google Scholar 

  24. T. Rager and R. Hilfiker, Z. Phys. Chem. (N. F), 223, No.7, 793–813 (2009).

    Article  CAS  Google Scholar 

  25. T. Friščić and W. Jones, Cryst. Growth Des., 9, No.3, 1621–1637 (2009).

    Article  Google Scholar 

  26. E. Lu, N. Rodríguez-Hornedo, and R. Suryanarayanan, CrystEngComm., 10, No.6, 665–668 (2008).

    Article  CAS  Google Scholar 

  27. S. L. Morissette, O. Almarsson, M. L. Peterson, et al., Adv. Drug Deliv. Rev., 56, No.3, 275–300 (2004).

    Article  CAS  Google Scholar 

  28. G. G. Z. Zhang, R. F. Henry, T. B. Borchardt, et al., J. Pharm. Sci., 96, No.5, 990–995 (2007).

    Article  CAS  Google Scholar 

  29. P. P. Bag, M. Patni, and C. Malla Reddy, CrystEngComm., 13, No.19, 5650–5652 (2011).

    Article  CAS  Google Scholar 

  30. A. Alhalaweh and S. P. Velaga, Cryst. Growth Des., 10, No.8, 3302–3305 (2010).

    Article  CAS  Google Scholar 

  31. E. A. Losev, M. A. Mikhailenko, A. F. Achkasov, et al., New J. Chem., 37, No.7, 1973–1981 (2013).

    Article  CAS  Google Scholar 

  32. K. Fucke, S. A. Myz, T. P. Shakhtshneider, et al., New J. Chem., 36, 1969 (2012).

  33. S. A. Myz, T. P. Shakhtshneider, N. A. Tumanov, et al., Russ. Chem. Bull., 9, 1782 (2012).

    Google Scholar 

  34. S. A. Myz, T. P. Shakhtshneider, K. Fucke, et al., Mendeleev Commun., 19, No.5, 272–274 (2009).

    Article  CAS  Google Scholar 

  35. N. Shan, F. Toda, and W. Jones, Chem. Commun., 20, 2372/2373 (2002).

    Google Scholar 

  36. E. A. Losev and E. V. Boldyreva, CrystEngComm., 16, 3857–3866 (2014).

    Article  CAS  Google Scholar 

  37. T. M. Bergfors, Protein Crystallization, USA Intl Univ Line (1998).

    Google Scholar 

  38. E. A. Stura and I. A. Wilson, J. Cryst. Growth, 110, No.1, 270–282 (1991).

    Article  CAS  Google Scholar 

  39. S. G. Arkhipov, B. A. Zakharov, and E. V. Boldyreva, Acta Crystallogr., 69,Pt 5, o517–o521 (2013).

    Google Scholar 

  40. W. Ostwald, Ztschr. für Phys. Chemie, 22,Pt 3, 289 (1897).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Arkhipov.

Additional information

Original Russian Text © 2014 S. G. Arkhipov, E. V. Boldyreva.

Zhurnal Strukturnoi Khimii, Vol. 55, No. 4, pp. 778–783, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, S.G., Boldyreva, E.V. An algorithm to identify the existence and reproducibly obtain single crystals of salts and mixed crystals of amino acids suitable for single crystal XRD and Raman spectroscopy experiments. J Struct Chem 55, 744–749 (2014). https://doi.org/10.1134/S0022476614040246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614040246

Keywords

Navigation