Skip to main content
Log in

Spin relaxation and structure of light-induced spin-correlated PCBM/P3HT+ radical pairs

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electron spin echo (ESE) technique is applied to determine the spin relaxation times of long-lived light-induced radicals and short-term spin-correlated radical pairs (SCRPs) formed by the laser flash of a composite consisting of [6,6]-phenyl-C61-butyric acid methyl ether (PCBM) and poly-(3-hexylthiophene) (P3HT) at 80 K. The ESE signal dependences recorded to measure the longitudinal relaxation times of P3HT+/PCBM SCRPs and the free P3HT+ radical are fitted by the exp(-(t/T 1)0.6) dependence with T 1 values lying in the microsecond time scale. The difference in the transverse spin relaxation times of the P3HT+/PCBM radical paira appeared after selective and non-selective echo-detected EPR spectrum excitation is explained by the instantaneous diffusion model. Based on the model, the magnetic interaction energy between the electron spins in P3HT+/PCBM SCRPs is estimated; E/ħ ∼ 106 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Green, K. Emery, Y. Hishikawa, et al., Prog. Photovolt: Res. Appl., 21, No. 1, 1 (2013).

    Article  Google Scholar 

  2. J. L. Bredas, J. E. Norton, J. Cornil, et al., Acc. Chem. Res., 42, No. 11, 1691 (2009).

    Article  CAS  Google Scholar 

  3. P. A. Troshin, R. N. Lyubovskaya, and V. F. Razumov, Nanotechnologies in Russia, 3, Nos. 5/6, 56 (2008).

    Google Scholar 

  4. M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater., 23, No. 31, 3597 (2011).

    Article  CAS  Google Scholar 

  5. S. Cook, R. Katoh, and A. Furube, J. Phys. Chem. C, 113, No. 6, 2547 (2009).

    Article  CAS  Google Scholar 

  6. V. D. Mihailetchi, H. X. Xie, B. de Boer, et al., Adv. Funct. Mater., 16, No. 5, 699 (2006).

    Article  CAS  Google Scholar 

  7. W. J. Grzegorczyk, T. J. Savenije, T. E. Dykstra, et al., J. Phys. Chem. C, 114, No. 11, 5182 (2010).

    Article  CAS  Google Scholar 

  8. S. C. J. Meskers, P. A. Hal, and J. H. Spiering, Phys. Rev. B, 61, No. 15, 9917 (2000).

    Article  CAS  Google Scholar 

  9. S. Singh and Z. V. Vardeny, Materials, 6, No. 3, 897 (2013).

    Article  CAS  Google Scholar 

  10. J. Piris, T. E. Dykstra, A. A. Bakulin, et al., J. Phys. Chem. C, 113, No. 17, 14500 (2009).

    Article  CAS  Google Scholar 

  11. J. M. Guo, H. Ohkita, H. Benten, et al., J. Am. Chem. Soc., 133, No. 17, 6154 (2010).

    Article  Google Scholar 

  12. J. Behrends, A. Sperlich, A. Schnegg, et al., Phys. Rev. B, 85, No. 12, 125026 (2012).

    Article  Google Scholar 

  13. H. Tanaka, Y. Yokoi, and N. Hasegawa, J. Appl. Phys., 107, No. 8, 083708 (2010).

    Article  Google Scholar 

  14. C. Carati, L. Boholdi, and R. Po, Phys. Rev. B, 84, No. 24, 245205 (2011).

    Article  Google Scholar 

  15. Y. Kobori, R. Noji, and S. Tsuganewa, J. Phys. Chem. C, 117, No. 4, 1589 (2013).

    Article  CAS  Google Scholar 

  16. M. N. Uvarov and L. V. Kulik, Appl. Magn. Res., 44, No. 1, 97 (2013).

    Article  CAS  Google Scholar 

  17. O. G. Poluektov, S. Filippone, N. Martin, et al., J. Phys. Chem. B, 114, No. 45, 14426 (2010).

    Article  CAS  Google Scholar 

  18. A. Sperlich, H. Kraus, C. Deibel, et al., J. Phys. Chem. B, 115, No. 46, 13513 (2011).

    Article  CAS  Google Scholar 

  19. V. I. Krinichnyi, E. I. Yudanova, and N. G. Spitsina, J. Phys. Chem. C, 114, No. 39, 16756 (2010).

    Article  CAS  Google Scholar 

  20. A. J. Hoff, P. Gast, S. A. Dzuba, et al., Spectrochim. Acta A, 54, No. 14, 2283 (1998).

    Article  Google Scholar 

  21. O. Schiemann and T. F. Prisner, Quart. Rev. Biophys., 40, No. 1, 1 (2007).

    Article  CAS  Google Scholar 

  22. K. M. Salikhov, A. G. Semenov, and Yu. D Tsvetkov, Electron Spin Echo and its Application [in Russian], Nauka, Novosibirsk (1976).

    Google Scholar 

  23. M. Emshwiller, E. L. Hahn, and D. Kaplan, Phys. Rev., 118, No. 2, 414 (1960).

    Article  CAS  Google Scholar 

  24. V. F. Yudanov, K. M. Salikhov, G. M. Zhidomirov, and Yu. D Tsvetkov, Theoretical and Experimental Chemistry, 5, No. 5, 451 (1969).

    Article  Google Scholar 

  25. O. G. Poluektov, S. V. Paschenko, and L. M. Utshig, Phys. Chem. Chem. Phys., 11, No. 31, 6750 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Uvarov.

Additional information

Original Russian Text © 2014 M. N. Uvarov, A. G. Popov, E. A. Lukina, L. V. Kulik.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 4, pp. 679–685, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarov, M.N., Popov, A.G., Lukina, E.A. et al. Spin relaxation and structure of light-induced spin-correlated PCBM/P3HT+ radical pairs. J Struct Chem 55, 644–650 (2014). https://doi.org/10.1134/S0022476614040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614040088

Keywords

Navigation