Journal of Structural Chemistry

, Volume 55, Issue 3, pp 475–480 | Cite as

Crystal structure of a trinuclear complex of zinc(II) with 2,6-Di-tert-butyl-p-quinone 1′-phthalazinylhydrazone

  • A. E. Gol’dberg
  • M. A. Kiskin
  • L. D. Popov
  • S. I. Levchenkov
  • I. N. Shcherbakov
  • Yu. P. Tupolova
  • V. A. Kogan
Article

Abstract

2,6-Di-tert-butyl-p-quinone 1′-phthalazynylhydrazone (HL) is synthesized; the total energies and geometry of the possible hydrazone tautomeric forms are calculated by quantum chemical methods. The hydrazone phthalazone tautomer is shown to be the most stable, which is well consistent with the 1H NMR spectroscopic data for hydrazone. An X-ray crystallographic analysis is performed of the hydrazone-based Zn(II) trinuclear complex, in which zinc atoms are linked by the diazine bridge of the phthalazine cycle and two pivalate bridges. The geometric properties of the monodeprotonated hydrazone residue in the complex are similar to the calculated data for the phthalazone hydrazone tautomeric form.

Keywords

hydrazones tautomerism 1-hydrazine phtalazine zinc(II) complex X-ray crystallography density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Kogan, S. I. Levchenkov, L. D. Popov, and I. N. Shcherbakov, Russ. J. Gen. Chem., 79, No. 1, 2767 (2009).CrossRefGoogle Scholar
  2. 2.
    D. A. Sullivan and G. J. Palenik, Inorg. Chem., 16, No. 5, 1127 (1977).CrossRefGoogle Scholar
  3. 3.
    L. K. Thompson, S. K. Mandal, E. J. Gabe, and J.-P. Charland, J. Chem. Soc., Chem. Commun., No. 20, 1537 (1986).Google Scholar
  4. 4.
    T. Wen, L. K. Thompson, F. L. Lee, and E. J. Gabe, Inorg. Chem., 27, No. 23, 4190 (1988).CrossRefGoogle Scholar
  5. 5.
    S. K. Mandal, L. K. Thompson, M. J. Newlands, et al., Inorg. Chim. Acta, 78, No. 2, 169 (1990).CrossRefGoogle Scholar
  6. 6.
    S. S. Tandon, L. K. Thompson, and R. C. Hynes, Inorg. Chem., 31, No. 11, 2210 (1992).CrossRefGoogle Scholar
  7. 7.
    G. Paolucci, S. Stelluto, S. Sitran, et al., Inorg. Chim. Acta, 193, No. 1, 57 (1992).CrossRefGoogle Scholar
  8. 8.
    A. M. Barrios and S. J. Lippard, Inorg. Chem., 40, No. 5, 1060 (2001).CrossRefGoogle Scholar
  9. 9.
    Z. Xu, L. K. Thompson, V. A. Milway, et al., Inorg. Chem., 42, No. 9, 2950 (2003).CrossRefGoogle Scholar
  10. 10.
    L. D. Popov, I. N. Shcherbakov, S. I. Levchenkov, et al., Russ. J. Coord. Chem., 37, No. 7, 483 (2011).CrossRefGoogle Scholar
  11. 11.
    M. Suzuki, T. Ishikawa, A. Harada, et al., Polyhedron, 16, No. 15, 2553 (1997).CrossRefGoogle Scholar
  12. 12.
    K. L. Tokarev, M. A. Kiskin, A. A. Sidorov, et al., Russ. Chem. Bull., Int. Ed., 57, No. 6, 1209 (2008).CrossRefGoogle Scholar
  13. 13.
    K. L. Tokarev, M. A. Kiskin, A. A. Sidorov, et al., Polyhedron, 28, Nos. 9/10, 2010 (2009).CrossRefGoogle Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT (2004).Google Scholar
  15. 15.
    I. G. Fomina, V. V. Chernyshev, Yu. A. Velikodnyi, et al., Russ. Chem. Bull., Int. Ed., 62, No. 2, 429 (2013).CrossRefGoogle Scholar
  16. 16.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, No. 45, 11623 (1994).CrossRefGoogle Scholar
  17. 17.
    A. D. Becke, J. Chem. Phys., 98, No. 7, 5648 (1993).CrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, No. 2, 785 (1988).CrossRefGoogle Scholar
  19. 19.
    G. A. Zhurko and D. A. Zhurko, Chemcraft Version 1.6 (build 338): http://www.chemcraftprog.com
  20. 20.
    SMART (Control) and SAINT (Integration) Software, Version 5.0, Bruker AXS Inc., Madison, WI (1997).Google Scholar
  21. 21.
    G. M. Sheldrik, SADABS, Program forScanning and Correction of Area Detector Data, Univ. Göttingen, Germany (2004).Google Scholar
  22. 22.
    G. M. Sheldrick, Acta Crystallogr. A, 64, No. 1, 112 (2008).CrossRefGoogle Scholar
  23. 23.
    G. Giorgi, F. Ponticelli, L. Chiasserini, and C. Pellerano, J. Chem. Soc., Perkin Trans. 2, No. 11, 2259 (2000).CrossRefGoogle Scholar
  24. 24.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, et al., Russ. J. Gen. Chem., 82, No. 3, 465 (2012).CrossRefGoogle Scholar
  25. 25.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, et al., Russ. J. Gen. Chem., 80, No. 12, 2501 (2010).CrossRefGoogle Scholar
  26. 26.
    R. J. Butcher, J. P. Jasinski, H. S. Yathirajan, et al., Acta Crystallogr., E63, No. 9, o3674 (2007).Google Scholar
  27. 27.
    O. Büyükgüngör, M. Odabasoglu, A. M. Vijesh, and H. S. Yathirajan, Acta Crystallogr., E63, No. 10, o4084 (2007).Google Scholar
  28. 28.
    F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem Soc., Perkin Trans. 2, No. 12, S1 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. E. Gol’dberg
    • 1
  • M. A. Kiskin
    • 1
  • L. D. Popov
    • 2
  • S. I. Levchenkov
    • 3
  • I. N. Shcherbakov
    • 2
  • Yu. P. Tupolova
    • 2
  • V. A. Kogan
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Chemistry DepartmentSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations