Skip to main content
Log in

Thermodynamic characteristics, structure, and interactions of L-proline in aqueous solutions of alcohols and urea

  • Brief Communications
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The enthalpies of dissolution of imino acid L-proline in aqueous solutions of methanol, 2-propanol, ethylene glycol, glycerin, and urea are measured by the calorimetric method at 313.15 K. Enthalpic parameters of the interaction of L-proline with nonaqueous components are calculated and compared with the data at 298.15 K. It is found that the sign of the heat capacity parameter of the pair and ternary interactions depends on whether the nonaqueous solvent component is a destroyer or stabilizer of the water structure. Partial molar heat capacities of proline in mixed solvents are obtained by the integral dissolution heat method. Temperature changes in the reduced enthalpy and entropy of the proline solution are determined at an increase in the temperature from 298 K to 313 K. It is shown that there is entropyenthalpy compensation at temperature changes in the characteristics during dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects [in Russian], Khimiya, Leningrad (1989).

    Google Scholar 

  2. O. V. Kulikov and P. V. Lapshev, Thermodynamic Aspects of Molecular Recognition in the Solutions of Model Biological and Macrocyclic Compounds, Biologically Active Compounds in Solutions: Structure, Thermodynamics, Reactivity (“Problems of Solution Chemistry”) [in Russian], Ac. A. M. Kutepov (ed.), Nauka, Moscow (2001).

  3. V. P. Korolev, J. Struct. Chem., 47, No. 4, 699–710 (2006).

    Article  CAS  Google Scholar 

  4. J. Jarabak, E. Seeds, and P. Talalay, Biochemistry, 5, 1269–1279 (1966).

    Article  CAS  Google Scholar 

  5. G. DiPaola and B. Belleau, Canad. J. Chem., 53, 3452–3461 (1975).

    Article  CAS  Google Scholar 

  6. G. DiPaola and B. Belleau, Canad. J. Chem., 56, 1827–1831 (1978).

    Article  CAS  Google Scholar 

  7. N. Alberola, J. Perez, J. Tatibouet, et al., J. Phys. Chem., 86, 2998–3002 (1982).

    Article  CAS  Google Scholar 

  8. X. Cao, Y. Tian, Z. Wang, et al., J. Therm. Anal. Calorim., 102, 75–81 (2010).

    Article  CAS  Google Scholar 

  9. J. F. Back, D. Oakenfull, M. B. Smith, et al., Biochemistry, 18, 5191–5196 (1979).

    Article  CAS  Google Scholar 

  10. G. Barone, G. Castronuovo, C. Della Volpe, et al., J. Phys. Chem., 83, 2703–2706 (1979).

    Article  CAS  Google Scholar 

  11. G. Barone, G. Castronuovo, V. Elia, and A. Meñña, J. Solut. Chem., 8, 157–163 (1979).

    Article  CAS  Google Scholar 

  12. C. Cascella, G. Castronuovo, V. Elia, et al., J. Chem. Soc. Faraday Trans. I, 85, 3289–3299 (1989).

    Article  CAS  Google Scholar 

  13. G. Castronuovo, V. Elia, M. Niccoli, et al., Thermochim. Acta, 389, 1–9 (2002).

    Article  CAS  Google Scholar 

  14. A. S. Rudolf and J. H. Crowe, Biophys. J., 50, 423–430 (1986).

    Article  Google Scholar 

  15. V. P. Korolev, O. A. Antonova, and N. L. Smirnova, Zh. Fiz. Khim., 84, 2250–2254 (2010).

    Google Scholar 

  16. V. P. Korolev, D. V. Batov, N. L. Smirnova, and A. V. Kustov, J. Struct. Chem., 48, No. 4, 666–672 (2007).

    Article  CAS  Google Scholar 

  17. V. P. Korolev, O. A. Antonova, and N. L. Smirnova, Zh. Fiz. Khim., 84, 1827–1831 (2010).

    CAS  Google Scholar 

  18. V. P. Korolev, O. A. Antonova, and N. L. Smirnova, J. Therm. Anal. Calorim., 108, 1–7 (2012).

    Article  CAS  Google Scholar 

  19. B. Palecz, H. Piekarski, and S. Romanowski, J. Mol. Liq., 84, 279–288 (2000).

    Article  CAS  Google Scholar 

  20. W. G. McMillan and J. E. Mayer, J. Chem. Phys., 13, 276–305 (1945).

    Article  CAS  Google Scholar 

  21. J. E. Desnoyers, G. Perron, L. Avédikian, et al., J. Solut. Chem., 5, 631–644 (1976).

    Article  CAS  Google Scholar 

  22. A. W. Hakin, L. L. Groft, J. L. Marty, et al., Canad. J. Chem., 75, 456–464 (1997).

    Article  CAS  Google Scholar 

  23. A. G. Cole, J. O. Hutchens, and J. W. Stout, J. Phys. Chem., 67, 1852–1855 (1963).

    Article  CAS  Google Scholar 

  24. J. O. Hutchens, A. G. Cole, and J. W. Stout, J. Am. Chem. Soc., 82, 4813–4815 (1960).

    Article  CAS  Google Scholar 

  25. A. K. Mishra and J. C. Ahluwalia, J. Chem. Soc. Faraday Trans. I, 77, 1469–1483 (1981).

    Article  CAS  Google Scholar 

  26. I. M. Barclay and J. A. V. Butler, Trans. Faraday Soc., 34, 1445–1454 (1938).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Korolev.

Additional information

Original Russian Text © 2014 V. P. Korolev, O. A. Antonova, N. L. Smirnova.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 2, pp. 376–381, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, V.P., Antonova, O.A. & Smirnova, N.L. Thermodynamic characteristics, structure, and interactions of L-proline in aqueous solutions of alcohols and urea. J Struct Chem 55, 353–359 (2014). https://doi.org/10.1134/S0022476614020243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614020243

Keywords

Navigation