Skip to main content
Log in

Structural-thermodynamic characteristics and intermolecular interactions in mixtures of strongly associated solvents with aprotic amides

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic characteristics of mixtures of aprotic amides with water and organic solvents with hydrogen bond networks are calculated. Within a model approach the specific and non-specific components of the total energy of the intermolecular interaction are determined, based on which the corresponding contributions to the enthalpies of component mixing are calculated. It is found that negative enthalpies of mixing in the mixtures under study are due to non-specific interactions rather than heterocomponent specific ones. It is shown that the difference in the structural-thermodynamic characteristics of aqueous and nonaqueous mixtures of aprotic amides is mainly caused by packing features of solutions and the behavior of hydrogen bond networks of water and organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Harris and S. Zalipsky (ed.), in: Poly(Ethylene Glycol): Chemistry and Biological Applications, ACS, Washington DC (1997).

    Google Scholar 

  2. G. Hradetzky, I. Hammerl, W. Kisan, K. Wehner, and H. J. Bittrich, Data of Selective Solvents, Verlag der Wissenschaften, Berlin (1989).

    Google Scholar 

  3. M. N. Rodnikova, Structural Self-Organization in Solutions and at the Interface [in Russian], LKI, Moscow (2008), pp. 151–186.

    Google Scholar 

  4. Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects [in Russian], Khimiya, Leningrad (1989).

    Google Scholar 

  5. R. S. Kumeev, I. A. Luk’yanchikova, V. A. Abakshin, et al., Zh. Obshch. Khim., 62, No. 6, 1248 (1992).

    CAS  Google Scholar 

  6. A. M. Zaichikov, Zh. Obshch. Khim., 72, No. 10, 1603 (2002).

    Google Scholar 

  7. A. M. Zaichikov and M. A. Krest’yaninov, Zh. Obshch. Khim., 74, No. 11, 1789 (2004).

    Google Scholar 

  8. A. M. Zaichikov, Zh. Obshch. Khim., 75, No. 8, 1320 (2005).

    Google Scholar 

  9. A. M. Zaichikov, J. Struct. Chem., 53, No. 5, 885 (2012).

    Article  CAS  Google Scholar 

  10. A. M. Zaichikov and S. V. Makarov, Zh. Obshch. Khim., 82, No. 2, 212 (2012).

    Google Scholar 

  11. V. N. Kartsev, M. N. Rodnikova, I. Bartel, et al., Zh. Fiz. Khim., 76, No. 6, 1016 (2002).

    CAS  Google Scholar 

  12. M. R. J. Dack, Chem. Soc. Rev., 4, No. 1, 211 (1975).

    Article  CAS  Google Scholar 

  13. V. N. Kartsev, M. N. Rodnikova, and S. N. Shtykov, J. Struct. Chem., 45, No. 1, 91 (2004).

    Article  CAS  Google Scholar 

  14. A. M. Zaichikov and M. A. Krest’yaninov, J. Struct. Chem., 50, No. 4, 647 (2009).

    Article  CAS  Google Scholar 

  15. F. Moučka and I. Nezbeda, J. Mol. Liq., 159, No. 1, 47 (2011).

    Article  Google Scholar 

  16. A. M. Zaichikov, Y. G. Bushuev, and G. A. Krestov, J. Therm. Anal., 45, No. 4, 687 (1995).

    Article  CAS  Google Scholar 

  17. E. B. Bagley, T. P. Nelson, and J. M. Scigliano, J. Phys. Chem., 77, No. 23, 2794 (1973).

    Article  CAS  Google Scholar 

  18. M. Costas, S. N. Bhattacharyya, and D. Patterson, J. Chem. Soc., Faraday Trans. I, 81, No. 1, 387 (1985).

    Article  CAS  Google Scholar 

  19. A. M. Zaichikov and G. A. Krestov, Zh. Fiz. Khim., 69, No. 3, 389 (1995).

    CAS  Google Scholar 

  20. A. M. Zaichikov, Zh. Obshch. Khim., 76, No. 4, 660 (2006).

    Google Scholar 

  21. A. M. Zaichikov and Yu. G. Bushuev, Zh. Fiz. Khim., 69, No. 11, 1942 (1995).

    CAS  Google Scholar 

  22. A. M. Zaichikov, J. Struct. Chem., 47,Suppl, S73 (2006).

    Article  CAS  Google Scholar 

  23. H. T. French, J. Chem. Thermodin. 21, No. 8, 801 (1989).

    Google Scholar 

  24. G. I. Egorov, E. L. Gruznov, and A. M. Kolker, Zh. Fiz. Khim., 70, No. 2, 216 (1996).

    CAS  Google Scholar 

  25. R. Gomes de Azevedo, J. Szydlowski, P. F. Pires, et al., J. Chem. Thermodin., 36, No. 3, 211 (2004).

    Article  Google Scholar 

  26. Yu. G. Bushuev and V. P. Korolev, Concentrated and Saturated Solutions [in Russian], A. M. Kutepov (ed.), Nauka, Moscow (2002), pp. 255–313.

  27. V. P. Belousov and M. Yu. Panov, Thermodynamics of Aqueous Solutions of Nonelectrolytes [in Russian], Khimiya, Leningrad (1983).

    Google Scholar 

  28. A. Panuszko, E. Gojło, J. Zielkiewicz, et al., J. Phys. Chem. B, 112, No. 8, 2483 (2008).

    Article  CAS  Google Scholar 

  29. E. S. Balankina and A. K. Lyashchenko, J. Mol. Liq., 103/104, No. 1, 211 (2003).

    Article  Google Scholar 

  30. N. G. Tsierkezos and K. N. Palaiologou, Phys. Chem. Liq., 47, No. 4, 447 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zaichikov.

Additional information

Original Russian Text © 2014 A. M. Zaichikov, M. A. Krest’yaninov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 2, pp. 297–304, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaichikov, A.M., Krest’yaninov, M.A. Structural-thermodynamic characteristics and intermolecular interactions in mixtures of strongly associated solvents with aprotic amides. J Struct Chem 55, 277–284 (2014). https://doi.org/10.1134/S0022476614020127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614020127

Keywords

Navigation