Skip to main content
Log in

Structures and energies of the tautomers of 1-nitroso-1,2,4-triazol-5-one-2-oxide: New triazol-5-one-n-oxides

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular orbital calculations at the DFT-B3LYP/aug-cc-pVDZ level are performed for the possible tautomers of 1-nitroso-1,2,4-triazol-5-one-2-oxide. We have examined the substitution effects of carbonyl, N-oxide, and nitroso groups by comparing the calculated geometries, relative energies, and electrostatic potentials of model molecules. The optimized structures, vibrational frequencies, and thermodynamic values for triazolone-N-oxides are obtained in the ground state. The results show that 1H, 4H tautomers are most stable. Detonation velocity and detonation pressure are evaluated by the Kamlet-Jacob equations based on the predicted density and the calculated heat of explosion. The explosive properties of the designed compounds seem to be promising compared with those of 1,3,5-trinitroperhydro-1,3,5-triazine (D 8.75 km/s, P 34.70 GPa), octahydro-1,3,5,7-tetrnitro-1,3,5,7-tetrazocine (D 9.10 km/s, P 39.3 GPa), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (D 9.20 km/s, P 42.0 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Klapotke, High Energy Density Materials, Springer, Berlin (2007).

    Book  Google Scholar 

  2. K. Y. Lee and M. D. Coburn, 3-Nitro-1,2,4-triazol-5-one, a Less Sensitive Explosive (LA10302-MS), Los Alamos National Laboratory, Los Alamos, NM (1985).

    Google Scholar 

  3. M. W. Smith and M. D. Cliff, NTO Based Explosive Formulations: A Technology Review (DSTO-TR-0796), MRL Technical Report, AR-1-873, Material Research Laboratory, Maribyrnong, Australia (1999).

    Google Scholar 

  4. V. W. Manchot and R. Noll, Liebigs, Ann der Chem., 343, 1–27 (1905).

    Article  Google Scholar 

  5. R. I. Hiyoshi, Y. Kohno, and J. Nakamura, J. Phys. Chem. A, 108, 5915–5920 (2004).

    Article  CAS  Google Scholar 

  6. H. M. Ma, J. R. Song, W. Dong, R. Z. Hu, G. H. Zhai, and Z. Y. Wen, J. Mol. Struct. (Theochem.), 678, 217–222 (2004).

    Article  CAS  Google Scholar 

  7. N. J. Harris and K. Lamnestsma, J. Am. Chem. Soc., 118, 8048–8055 (1996).

    Article  CAS  Google Scholar 

  8. L. Turker and T. Atalar, J. Hazar. Mater. A, 137, 1333/1334 (2006).

    Google Scholar 

  9. L. Turker and C. Bayer, J. Energ. Mater., 30, 72–96 (2012).

    Article  Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, revision B.04, Gaussian Inc, Pittsburgh (2003).

    Google Scholar 

  11. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133–A1138 (1965).

    Article  Google Scholar 

  12. R. G. Parr and W. Yang, Density Functional Theory of Atoms, Molecules, Oxford University Press, London (1989).

    Google Scholar 

  13. D. Becke, Phys. Rev. A, 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  14. S. H. Vosko, L. Vilk, and M. Nusair, Canad. J. Phys., 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  16. Materials Studio 4.1, Accelrys Inc., San Diego, CA (2004).

  17. M. J. Kamlet and S. J. Jacobs, J. Chem. Phys., 48, 23–35 (1968).

    Article  CAS  Google Scholar 

  18. J. Akhavan, Chemistry of Explosives, The Royal Society of Chemistry, Cambridge (1998).

    Google Scholar 

  19. F. Fukui, T. Yonezawa, and H. Shingu, J. Chem. Phys., 20, 722–725 (1952).

    Article  CAS  Google Scholar 

  20. Z. Zhou and R. G. Parr, J. Am. Chem. Soc., 112, 5720–5724 (1990).

    Article  CAS  Google Scholar 

  21. R. G. Pearson, J. Org. Chem., 54, 1423–1430 (1989).

    Article  CAS  Google Scholar 

  22. P. Ravi and S. P. Tewari, Struct. Chem. (2012). doi 10.1007/s11224.012-0028-9

    Google Scholar 

  23. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond, Oxford University Press, New York (1999).

    Google Scholar 

  24. B. A. Hess Jr. and L. J. Schaad, J. Am. Chem. Soc., 93, 2413–2416 (1971).

    Article  CAS  Google Scholar 

  25. R. C. Haddon and T. Fukunaga, Tetrahedron Lett., 21, 1191 (1980).

    Article  CAS  Google Scholar 

  26. T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite, J. Am. Chem. Soc., 110, 1113–1127 (1988).

    Article  CAS  Google Scholar 

  27. Z. Zhou, R. G. Parr, and J. F. Garst, Tetrahedron Lett., 29, 4843–4846 (1988).

    Article  CAS  Google Scholar 

  28. Z. Zhou and R. G. Parr, J. Am. Chem. Soc., 11, 7371–7379 (1989).

    Article  Google Scholar 

  29. J. S. Murray and K. D. Sen, Molecular Electrostatic Potentials: Concepts, Applications, Elsevier, Amstardam, Netherlands (1996).

    Google Scholar 

  30. S. G. Cho, E. M. Goh, and J. K. Kim, Bull. Korean Chem. Soc., 22, 775–778 (2001).

    CAS  Google Scholar 

  31. P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and A. Toro-Labbe, Mol. Phys., 107, 2095–2101 (2009).

    Article  CAS  Google Scholar 

  32. C. K. Kim, S. G. Cho, C. K. Kim, H. Y. Park, H. Zhang, and H. W. Lee, J. Comput. Chem., 29, 1818–1824 (2008).

    Article  CAS  Google Scholar 

  33. V. K. Belsky and P. M. Zorkii, Acta Cryst. A, 13, 1004–1006 (1977).

    Article  Google Scholar 

  34. D. E. Manolopoulos, J. C. May, and S. E. Down, Chem. Phys. Lett., 181, 105–111 (1991).

    Article  CAS  Google Scholar 

  35. P. E. Eaton, R. Gilardi, and M.-X. Zhang, Adv. Mat., 12, 1143–1148 (2000).

    Article  CAS  Google Scholar 

  36. D. M. Hoffman, Prop., Explos., Pyrotech., 28, 194–200 (2003).

    Article  CAS  Google Scholar 

  37. J. Mathieu and H. Stucki, Chimia, 58, 383–389 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi.

Additional information

Original Russian Text © 2014 P. Ravi, S. P. Tewari.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 55, No. 2, pp. 268–275, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, P., Tewari, S.P. Structures and energies of the tautomers of 1-nitroso-1,2,4-triazol-5-one-2-oxide: New triazol-5-one-n-oxides. J Struct Chem 55, 248–255 (2014). https://doi.org/10.1134/S0022476614020085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614020085

Keywords

Navigation