Skip to main content
Log in

Ab initio study of dehalohydrogenation reaction of 2-halo-2,3-dihydrophosphinine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Decomposition of 2-fluoro-2,3-dihydrophosphinine (1), 2-chloro-2,3-dihydrophosphinine (3), 2-bromo-2,3-dihydrophosphinine (5) to phosphinine was investigated using Molecular orbital and density functional theory. Study on the B3LYP/6-311+G** level of theory revealed that the required energy for the decomposition of compounds 1, 3, and 5 to phosphinine is 30.56 kcal·mol−1, 28.23 kcal·mol−1, and 24.03 kcal·mol−1, respectively. HF/6-311+G**//B3LYP/6-311+G** calculated barrier height for the decomposition of compound 1, 3, and 5 to phosphinine is 57.56 kcal·mol−1, 37.26 kcal·mol−1, and 30.77 kcal·mol−1, respectively. Also, MP2/6-311+G**//B3LYP/6-311+G** results indicated that the barrier height for the decomposition of compound 1, 3, and 5 to phosphinine is 46.59 kcal·mol−1, 47.28 kcal·mol−1, and 42.57 kcal·mol−1, respectively. Natural bond orbital (NBO) population analysis and nuclear independent chemical shift (NICS) results showed that, reactants are non-aromatic but products of elimination reaction are aromatic, C-H and C-X bonds are broken and H-X bond is appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Liu, J. Chem. Phys., 80, 581 (1984).

    Article  CAS  Google Scholar 

  2. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  3. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., 37, 785 (1988).

    Article  CAS  Google Scholar 

  4. W. J. Hehri, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York (1986).

    Google Scholar 

  5. J. M. Seminario and P. Politzer (eds.), in: Modern Density Functional Theory. A Tool for Chemistry, Elsevier, Amsterdam (1995).

    Google Scholar 

  6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachar, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andress, M. Head-Gordon, and E. S. Replogle, Gaussian 98 (Revision A3), Gaussian Inc., Pittsburgh, PA (1998).

    Google Scholar 

  7. U. Molder, P. Burk, and I. A. Koppel, J. Mol. Struct. (Theochem.), 712, 81–89 (2004).

    Article  Google Scholar 

  8. F. Freeman, A. Phornvoranunt, and W. J. Hehre, J. Phys. Org. Chem., 11, 831–839 (1998).

    Article  CAS  Google Scholar 

  9. E. D. Glendening, A. E. Reed, J. E. Carpener, and F. Weinhold, NBO Version 3.1.

  10. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  11. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988); F. Weinhold, in: Natural Bond Orbital Methods, P. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, and P. A. Kollman (eds.), Encyclopedia of Computational Chemistry, Vol. 3, Wiley, Chichester, UK (1998), pp. 1792–1811.

    Article  CAS  Google Scholar 

  12. I. Alkorta and J. Elguero, Struct. Chem., 16, 77–79 (2005).

    Article  CAS  Google Scholar 

  13. Serena Software, Box 3076, Bloomington, IN, USA.

  14. M. J. S. Dewar, E. G. Zeobisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).

    Article  CAS  Google Scholar 

  15. J. J. P. Stewart, QCPE 581, Department of Chemistry, Indiana University, Bloomington, IN, USA.

  16. A. Rahaman and L. M. Raff, J. Phys. Chem. A., 105, 2156 (2001).

    Article  CAS  Google Scholar 

  17. S. Kunsagi-Mate, E. Vegh, G. Nagy, and L. Kollar, J. Phys. Chem. A, 106, 6319 (2002).

    Article  CAS  Google Scholar 

  18. P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. E. Hommes, J. Am. Chem. Soc., 118, 6317 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shirani Il Beigi.

Additional information

Original Russian Text © 2014 H. Shirani Il Beigi, M. Nikbakht, P. Ghanbar pour.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 55, No. 2, pp. 237–242, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani Il Beigi, H., Nikbakht, M. & Ghanbar pour, P. Ab initio study of dehalohydrogenation reaction of 2-halo-2,3-dihydrophosphinine. J Struct Chem 55, 217–222 (2014). https://doi.org/10.1134/S0022476614020048

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614020048

Keywords

Navigation