Skip to main content
Log in

Ab initio study of structural and electronic properties of zigzag graphene nanoribbons on hexagonal boron nitride

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Results of the study of structural and electronic properties of the 8-ZGNR/h-BN(001) heterostructure by the pseudopotential method using plane waves within density functional theory are presented. Within one approximation the features of the spin state at the Fermi level are studied along with the role of the edge and substrate effects in the opening of the energy gap in the 8-ZGNR/h-BN(001) heterostructure in both ferromagnetic and antiferromagnetic orderings. The effect of a substrate made of hexagonal boron nitride was found for the first time. It consists in the opening of the energy gap in the π electron spectrum of the 8-ZGNR/h-BN(001) heterostructure for the ferromagnetic spin ordering. It is shown that the gap was 30 meV. Contributions of the edge effects of the graphene nanoribbon and the substrate to the energy gap formation are differentiated for the first time. It is found that in the 8-ZGNR/h-BN(001) heterostructure the dominant role in the opening of the energy gap at the Fermi level is played by the edge effects. However, when the nanoribbon width decreases, e.g., to six dimmers the substrate role in the gap opening increases and amounts to 45%. Local magnetic moments of carbon atoms are estimated. It is shown that small magnetic moments are induced on boron and nitrogen atoms at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science, 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. S. S. Yu, W. T. Zheng, Q. B. Wen, and Q. Jiang, Carbon, 46, 537–543 (2008).

    Article  CAS  Google Scholar 

  3. E. S. Grichuk and È. A. Manykin, Zh. Èksp. Teor. Fiz., 140, Vyp. 4(10), 801–813 (2011).

    Google Scholar 

  4. K. Wakabayashi and S. Dutta, Solid State Commun., 152, 1420–1430 (2012).

    Article  CAS  Google Scholar 

  5. K. Sugawara, T. Sato, S. Souma, T. Takahash, and H. Suematsu, Phys. Rev. B, 68(19), 194419 (2003).

    Google Scholar 

  6. D. Usachov, V. K. Adamchuk, D. Haberer, et al., Phys. Rev. B, 82, 075415-1–6 (2012).

    Google Scholar 

  7. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B, 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  8. K. Kobayashi, Phys. Rev. B, 48, 1757 (1993).

    Article  CAS  Google Scholar 

  9. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn., 65, No. 7, 1920–1923 (1996).

    Article  CAS  Google Scholar 

  10. V. V. Ilyasov and I. V. Ershov, Phys. Solid State, 54, No. 11, 2332–2340 (2012).

    Article  Google Scholar 

  11. G. Giovanetti, P. A. Khomyakov, G. Brocks, et al., Phys. Rev. B: Condens. Matter., 76(7), 073103 (2007).

    Article  Google Scholar 

  12. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Wees, Appl. Phys. Lett., 99, 232104 (2011).

    Article  Google Scholar 

  13. C. R. Dean, A. F. Young, I. Meric, C. Lee, et al., Nature Nanotechnol., 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  14. A. Guermoune, T. Chari, F. Popescu, and S. S. Sabri, Carbon, 49, 4204–4210 (2011).

    Article  CAS  Google Scholar 

  15. J. Chen, M. Vanin, Y. Hu, and H. Guo, Phys. Rev. B, 86, 075146-1–6 (2012).

    Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, et al., J. Phys.: Condens. Matter., 1, 395502 (2009).

    Google Scholar 

  17. P. Hohonberg and W. Kohn, Phys. Rev. B, 136, 864 (1964).

    Article  Google Scholar 

  18. W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1133 (1965).

    Article  Google Scholar 

  19. A. D. Corso, A. Pasquarello, and A. Baldereschi, Phys. Rev. B, 56, 369–372 (1997).

    Google Scholar 

  20. M. Terrones, A. R. Botello-Mendez, J. Campos-Delgado, et al., Nano Today, 5, 351–372 (2010).

    Article  Google Scholar 

  21. S. S. Yu, W. T. Zheng, Q. B. Wen, and Q. Jiang, Carbon, 46, 537–543 (2008).

    Article  CAS  Google Scholar 

  22. Y. Li, W. Zhang, M. Morgenstern, and R. Mazzarello, J. Phys.: Condens. Matter., 1, 1210 (2012).

    Google Scholar 

  23. V. Ilyasov, B. Meshi, A. Ryzhkin, I. Ershov, I. Nikiforov, and A. Ilyasov, J. Modern Phys., 2, 1120–1135 (2011).

    Article  CAS  Google Scholar 

  24. D. Jiang, B. G. Sumpter, and S. Dai, J. Chem. Phys., 126, 134701 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ilyasov.

Additional information

Original Russian Text © 2014 V. V. Ilyasov, V. Ch. Nguyen, I. V. Ershov, D. Ch. Nguyen.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 55, No. 2, pp. 209–219, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyasov, V.V., Nguyen, V.C., Ershov, I.V. et al. Ab initio study of structural and electronic properties of zigzag graphene nanoribbons on hexagonal boron nitride. J Struct Chem 55, 191–200 (2014). https://doi.org/10.1134/S0022476614020012

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614020012

Keywords

Navigation