Skip to main content
Log in

X-ray diffraction study of Al-Si melts

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

X-ray diffraction is used to study Al-Si melts with a content of 0 at.%, 6 at.%, 10 at.%, 18 at.%, 21 at.%, 26 at.%, 35 at.%, 60 at.%, 80 at.%, and 100 at.% Si. The structural factors, atomic distribution curves, and parameters characterizing the immediate environment of atoms in the melts are calculated. The results are described using the microheterogeneous melt structure model near the liquidus temperature. According to the model, the melts contain microgroupings with the statistical atomic distribution that are similar in composition to the Al-6%Si melt and liquid silicon microgroupings. High-temperature studies indicate an increase in the structural homogeneity of the melts with increasing temperature due to the progressive metallization of interatomic bonds in the silicon microgroupings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Bazin, A.V. Emel’yanov, B. A. Baum, et al., Metallofizika, 8, No. 2, 11 (1986).

    CAS  Google Scholar 

  2. K. Vahvaselkä, Phys. Scr., 18, No. 4, 226 (1978).

    Article  Google Scholar 

  3. E. A. Pastukhov, N. A. Vatolin, V. L. Lisin, V. M. Denisov, and S. V. Kachin, Diffraction Studies of the structure of High-Temperature Melts [in Russian], UrO RAN, Yekaterinburg (2003).

    Google Scholar 

  4. Y. Waseda and K. Suzuki, Z. Physik. B, 20, No. 4, 339 (1975).

    Article  CAS  Google Scholar 

  5. I. Stich, R. Car, and M. Parrinello, Phys. Rev. Lett., 63, 2240 (1989).

    Article  CAS  Google Scholar 

  6. H. Stillinger and T. Weber, Phys. Rev. B, 31, No. 8, 5262 (1985).

    Article  CAS  Google Scholar 

  7. N. Jakse, L. Hennet, and D. Price, Appl. Phys. Lett., 83, No. 23, 4734 (2003).

    Article  CAS  Google Scholar 

  8. T. Kim, G. Lee, B. Sieve, et al., Phys. Rev. Lett., 95, 085501(1) (2005).

    Google Scholar 

  9. H. Kimura, M. Watanabe, K. Izumi, et al., Appl. Phys. Lett., 78, No. 5, 604 (2001).

    Article  CAS  Google Scholar 

  10. H. Olijnyk, S. Sikka, and W. Holzapfel, Phys. Lett. A, 103, No. 3, 137 (1984).

    Article  Google Scholar 

  11. J. Hu, L. Merkel, C. Menoni, et al., Phys. Rev. B, 34, 4679 (1989).

    Article  Google Scholar 

  12. M. McMahon and R. Nelmes, Phys. Rev. B, 47, No. 13, 8337 (1993).

    Article  CAS  Google Scholar 

  13. V. P. Kazimirov, V. A. Shovskii, V. E. Sokol’skii, et al., Metally, No. 6, 97 (1996).

    Google Scholar 

  14. J. Murray and A. McAIister, Bulletin of Alloy Phase Diagrams, 5, No. 1, 74 (1984).

    Article  CAS  Google Scholar 

  15. S. Mudry and I. Shtablavyi, Chem. Met. Alloys, 1, 163 (2008).

    Google Scholar 

  16. Y. Kita, J. Zytveld, Z. Morita, et al., J. Phys.: Condens. Matter., 6, 811 (1994).

    CAS  Google Scholar 

  17. X. Bian, W. Wang, S. Yuan, et al., Sci. Techn. Advanc. Mater., 2, No. 1, 19 (2001).

    Article  CAS  Google Scholar 

  18. X. Bian, W. Wang, and J. Qin, Materials Characterization, 46, No. 1, 25 (2001).

    Article  Google Scholar 

  19. W. Wang, X. Bian, J. Qin, et al., Metall. Mater. Trans. A, 31, No. 9, 2163 (2000).

    Article  Google Scholar 

  20. A. G. Prigunova, V. I. Mazur, Yu. N. Taran, et al., Metallofizika, 5, No. 1, 88 (1983).

    CAS  Google Scholar 

  21. A. G. Prigunova, V. I. Mazur, Yu. N. Taran, et al., Metallofizika, 5, No. 3, 54 (1983).

    CAS  Google Scholar 

  22. J. Gabathuler, S. Steeb, and P. Lamparter, Z. Naturforsch. A, 34, No. 11, 1305 (1979).

    Google Scholar 

  23. I. V. Mateiko, M. A. Shevchenko, N. N. Kotova, et al., Zh. Fiz. Khim., 85, No. 2, 212 (2011).

    Google Scholar 

  24. V. Degtyareva, G. Chipenko, I. Belash, et al., Phys. Stat. Sol. (a), 89, No. 2, K127 (1985).

    Article  CAS  Google Scholar 

  25. A. J. Kolesnikov, O. I. Barkalov, I. T. Belash, et al., J. Phys.: Condens. Matter., 5, No. 27, 4737 (1993).

    CAS  Google Scholar 

  26. X. Yu, G. Zhang, X. Wang, et al., J. Mater. Sci., 34, No. 17, 4149 (1999).

    Article  CAS  Google Scholar 

  27. J. Chevrier, D. Pavuna, and F. Cyrot-Lackmann, Phys. Rev., 36, No. 17, 9115 (1987).

    Article  CAS  Google Scholar 

  28. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, et al., Fiz. Tv. Tela, 41, No. 1, 3 (1999).

    Google Scholar 

  29. V. F. Degtyareva, G. V. Chipenko, E. G. Ponyatovskii, et al., Fiz. Tv. Tela, 26, No. 4, 1208 (1984).

    CAS  Google Scholar 

  30. D. V. Livanov, E. I. Isaev, Yu. Kh. Velikov, et al., Eur. Phys. J. B, 27, No. 1, 119 (2002).

    CAS  Google Scholar 

  31. A. V. Romanova and A. G. Il’inskii, Ukr. Fiz. Zh., 19, No. 9, 1565 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Kazimirov.

Additional information

Original Russian Text © 2013 V. P. Kazimirov, A. M. Yakovenko, A. S. Muratov, A. S. Roik, V. È. Sokol’skii.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 2, pp. S360–S367, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazimirov, V.P., Yakovenko, A.M., Muratov, A.S. et al. X-ray diffraction study of Al-Si melts. J Struct Chem 54 (Suppl 2), 355–362 (2013). https://doi.org/10.1134/S0022476613080155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613080155

Keywords

Navigation