Skip to main content
Log in

Bulk properties of a liquid phase mixture {ethylene glycol+tert-butanol} in the temperature range 278.15–348.15 K and pressures of 0.1–100 MPa. II. Molar isothermal compressibility, molar isobaric expansibility, thermal pressure coefficient, and internal pressure

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Based on the experimental data, the molar isothermal compressibilities, molar isobaric expansibilities, thermal pressure coefficients, internal pressures of a liquid phase mixture {ethylene glycol (1) + tert-butanol (2)} are calculated for a wide spectrum of compositions in the range of pressures of 0.1–100 MPa and temperatures of 278.15–323.15 K. Shown that the dependences of molar isothermal compressibilities K T, m , molar isobaric expansibilities E P, m , and isochoric thermal pressure coefficients β on the mole fraction of tert-butanol in the mixture are characterized by the absence of extrema typical of aqueous systems. The manifestation of negative partial expansibility and negative partial expansibility of ethylene glycol in the mixture is found. The thermal pressure coefficients decrease with an increase in the mole fraction of tert-butanol at all pressures and temperatures. A rise in the pressure increases the thermal pressure coefficient, while a rise in the temperature decreases its value due to a decrease of free space in the mixture. An increase in the concentration of tert-butanol leads to an increase in the negative temperature coefficient of internal pressure ΔP intT, which indicates a weakening of intermolecular interaction at these compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Egorov, D. M. Makarov, and A. M. Kolker, J. Struct. Chem., 54,Suppl. 2, S305–S320 (2013).

    Google Scholar 

  2. J.-Y. Huot, E. Battistel, R. Lumry, G. Villeneuve, J.-F. Lavallee, A. Anusiem, and C. Jolicoeur, J. Solut. Chem., 17, 601 (1988).

    Article  CAS  Google Scholar 

  3. E. Zorebski and A. Waligóra, J. Chem. Eng. Data, 53, 591 (2008).

    Article  CAS  Google Scholar 

  4. J. A. Riddick, W. B. Bunger, and T. B. Sakano, Techniques of Chemistry. Organic Solvents, 4th ed., Wiley-Interscience, New York (1986), Vol. II.

    Google Scholar 

  5. E. A. Moelwin-Hughes, Physical Chemistry, Pergamon Press, London (1957).

    Google Scholar 

  6. J. H. Hildebrand and R. L. Scott Regular Solutions, Englewood Cliffs, Prentice-Hall, New Jersey (1962).

    Google Scholar 

  7. I. Prigozhin and R. Defei, Chemical Thermodynamics [in Russian], Nauka, Novosibirsk (1966).

    Google Scholar 

  8. V. N. Kartsev, M. N. Rodnikova, and S. N. Shtykov, J. Struct. Chem., 45, No. 1, 91–95 (2004).

    Article  CAS  Google Scholar 

  9. R. O. Watts and I. J. McGee, Liquid State Chemical Physics, Wiley, New York (1976).

    Google Scholar 

  10. E. V. Ivanov and V. K. Abrosimov, J. Struct. Chem., 46, No. 5, 856–861 (2005).

    Article  CAS  Google Scholar 

  11. A. M. Kolker, V. P. Korolev, and D. V. Batov, J. Struct. Chem., 46, No. 5, 927–930 (2005).

    Article  CAS  Google Scholar 

  12. V. N. Kartsev and I. V. Bogomolova, J. Struct. Chem., 47,Suppl., S159–S156 (2006).

    Google Scholar 

  13. V. N. Kartsev, K. E. Pankin, and D. V. Batov, J. Struct. Chem., 47, No. 2, 277 (2006).

    Article  CAS  Google Scholar 

  14. M. J. Blandamer and H. Hoiland, Phys. Chem. Chem. Phys., 1, 1873 (1999).

    Article  CAS  Google Scholar 

  15. P. Buckley and P. A. Giguère, Can. J. Chem., 45, 397–407 (1967).

    Article  CAS  Google Scholar 

  16. Yu. Ia. Kharitonov, E. G. Khoshabova, M. N. Rodnikova, K. T. Dudnikova, and A. B. Razumova, Dokl. Akad. Nauk SSSR, 304, No. 4, 917 (1989).

    CAS  Google Scholar 

  17. R. Boese and H.-C. Weiss, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., C54, IUC9800024 (1998).

    Google Scholar 

  18. L. Saiz, J. A. Padro, and E. Guardia, J. Chem. Phys., 114, 3187 (2001).

    Article  CAS  Google Scholar 

  19. I. Bakó, T. Grósz, G. Pálinkás, and M. C. Bellisent-Funel, J. Chem. Phys., 118, 3215 (2003).

    Article  Google Scholar 

  20. A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A, 108, 7151 (2004).

    Article  CAS  Google Scholar 

  21. A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A, 108, 7165 (2004).

    Article  CAS  Google Scholar 

  22. A. G. Novikov, M. N. Rodnikova, and O. V. Sobolev, Physica B, 350, E363 (2004).

    Article  CAS  Google Scholar 

  23. N. A. Chumaevskii, M. N. Rodnikova, and J. Barthel, J. Mol. Liq., 115/2-3, 63 (2004).

    Article  Google Scholar 

  24. M. Matsugami, T. Takamuku, T. Otomo, and T. Yamaguchi, J. Phys. Chem. B, 110, 12372 (2006).

    Article  CAS  Google Scholar 

  25. M. N. Rodnikova, N. A. Chumaevskii, V. M. Troitskii, and D. B. Kayumova, J. Phys. Chem., 80, No. 5, 947 (2006).

    Google Scholar 

  26. G. I. Egorov, D. M. Makarov, and A. M. Kolker, J. Chem. Thermodyn., 61, 169 (2012).

    Article  Google Scholar 

  27. A. H. Narten and S. I. Sandler, J. Chem. Phys., 71, 2069 (1979).

    Article  CAS  Google Scholar 

  28. P. G. Kusalik, A. P. Lyubartsev, D. L. Bergman, and A. Laaksonen, J. Phys. Chem. B, 104, 9526 (2000).

    Article  CAS  Google Scholar 

  29. D. Wojtkow and M. A. Czarnecki, J. Phys. Chem. A, 109, 8218 (2005).

    Article  CAS  Google Scholar 

  30. T. Fukasawa, Y. Tominaga, and A. Wakisaka, J. Phys. Chem. A, 108, 59 (2004).

    Article  CAS  Google Scholar 

  31. D. T. Bowron, J. L. Finney, and A. K. Soper, Mol. Phys., 93, 531 (1998).

    CAS  Google Scholar 

  32. K. Yoshida, T. Yamaguchi, A. Kovalenko, and F. Hirata, J. Phys. Chem. B, 106, 5042 (2002).

    Article  CAS  Google Scholar 

  33. M. Sakurai, K. Nakamura, and K. Nitta, Bull. Chem. Soc. Jpn., 67, 1580 (1994).

    Article  CAS  Google Scholar 

  34. V. I. Grasin and V. K. Abrosimov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 2, 317 (1991).

    Google Scholar 

  35. M. Sakurai and T. Nakagawa, J. Chem. Thermodyn., 14, 269 (1982).

    Article  CAS  Google Scholar 

  36. M. Sakurai and T. Nakagawa, J. Chem. Thermodyn., 16, 171 (1984).

    Article  CAS  Google Scholar 

  37. E. V. Ivanov and V. K. Abrosimov, Zh. Neorg. Khim., 40, No. 6, 1047 (1995).

    CAS  Google Scholar 

  38. E. V. Ivanov, J. Chem. Thermodyn., 47, 162 (2012).

    Article  CAS  Google Scholar 

  39. M. Sakurai, Bull. Chem. Soc. Jpn., 60, 1 (1987).

    Article  CAS  Google Scholar 

  40. C. de Visser, G. Perron, and J. E. Desnoyers, Can. J. Chem., 55, 856 (1977).

    Article  Google Scholar 

  41. P. Hynčica, L. Hnedkovsky, and I. Cibulka, J. Chem. Thermodyn., 38, 418 (2006).

    Article  Google Scholar 

  42. M. I. Origlia and E. M. Wooley, J. Chem. Thermodyn., 33, 451 (2001).

    Article  CAS  Google Scholar 

  43. C. Jolicouer and G. Lacroix, Can. J. Chem., 54, 624 (1976).

    Article  Google Scholar 

  44. G. I. Egorov and D. M. Makarov, J. Chem. Thermodyn., 43, 430 (2011).

    Article  CAS  Google Scholar 

  45. M. Sakurai, J. Solut. Chem., 18, 37 (1989).

    Article  CAS  Google Scholar 

  46. A. F. S. S. Mendonca, M. J. A. Barbas, J. M. Freitas, and I. M. S. Lampreia, J. Chem. Thermodyn., 36, 965 (2004).

    Article  CAS  Google Scholar 

  47. M. Sakurai, T. Komatsu, and T. Nakagawa, J. Solut. Chem., 4, 511 (1975).

    Article  CAS  Google Scholar 

  48. D. Hamilton and R. H. Stokes, J. Solut. Chem., 1, 213 (1972).

    Article  CAS  Google Scholar 

  49. G. I. Egorov and D. M. Makarov, J Solut. Chem., 41, 536 (2012).

    Article  CAS  Google Scholar 

  50. V. N. Kartsev, M. N. Rodnikova, J. Bartel, and S. N. Shtykov, Zh. Fiz. Khim., 76, No. 6, 1016 (2002).

    CAS  Google Scholar 

  51. V. N. Kartsev, M. N. Rodnikova, S. N. Shtykov, and J. Bartel, Zh. Fiz. Khim., 77, No. 8, 1456 (2003).

    CAS  Google Scholar 

  52. V. N. Kartsev, M. N. Rodnikova, and S. N. Shtykov, J. Struct. Chem., 45, No. 1, 91–95 (2004).

    Article  CAS  Google Scholar 

  53. V. N. Kartsev, J. Struct. Chem., 45, No. 5, 832–837 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Egorov.

Additional information

Original Russian Text © 2013 G. I. Egorov, D. M. Makarov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 2, pp. S325–S340, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, G.I., Makarov, D.M. Bulk properties of a liquid phase mixture {ethylene glycol+tert-butanol} in the temperature range 278.15–348.15 K and pressures of 0.1–100 MPa. II. Molar isothermal compressibility, molar isobaric expansibility, thermal pressure coefficient, and internal pressure. J Struct Chem 54 (Suppl 2), 320–335 (2013). https://doi.org/10.1134/S002247661308012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661308012X

Keywords

Navigation