Skip to main content
Log in

Bulk properties of a liquid phase mixture {ethylene glycol+tert-butanol} in the temperature range 278.15–348.15 K and pressures of 0.1-100 MPa. I. Experimental results, excess and partial molar volumes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The densities ρ and coefficients of compressibility k = ΔV/V 0 of a binary mixture {ethylene glycol (1) + tert-butanol (2)} in the temperature range of 278.15–323.15 K and pressures of 0.1–100 MPa over the entire range of compositions of liquid phase state are measured. Found that the coefficients of compressibility k of the mixture increase both with an increase in the concentration of tert-butanol and with a rise in temperature and pressure. The excess molar volumes of the mixture, apparent, partial molar volumes, and limiting partial molar volumes of the components are calculated. It is showed that the excess molar volumes of the mixture are negative and decrease when the pressure increases. The excess molar volumes are described by the Redlich-Kister equation. The partial molar volumes of ethylene glycol sharply decrease in the range of high concentrations of tert-butanol. The dependences of partial molar volumes of ethylene glycol are characterized by the presence of a region of temperature inversion. The “negative compressibility” of the limiting partial volumes of ethylene glycol is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Buckley and P. A. Giguère, Canad. J. Chem., 45, 397 (1967).

    Article  CAS  Google Scholar 

  2. Yu. Ia. Kharitonov, E. G. Khoshabova, M. N. Rodnikova, K. T. Dudnikova, and A. B. Razumova, Dokl. Akad. Nauk SSSR, 304, No. 4, 917 (1989).

    CAS  Google Scholar 

  3. R. Boese and H.-C. Weiss, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., C54, IUC9800024 (1998).

  4. L. Saiz, J. A. Padro, and E. Guardia, J. Chem. Phys., 114, 3187 (2001).

    Article  CAS  Google Scholar 

  5. I. Bakó, T. Grósz, G. Pálinkás, and M. C. Bellisent-Funel, J. Chem. Phys., 118, 3215 (2003).

    Article  Google Scholar 

  6. A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A, 108, 7151 (2004).

    Article  CAS  Google Scholar 

  7. A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A, 108, 7165 (2004).

    Article  CAS  Google Scholar 

  8. A. G. Novikov, M. N. Rodnikova, and O. V. Sobolev, Physica B, 350, E363 (2004).

    Article  CAS  Google Scholar 

  9. N. A. Chumaevskii, M. N. Rodnikova, and J. Barthel, J. Mol. Liq., 115/2-3, 63 (2004).

    Article  Google Scholar 

  10. M. Matsugami, T. Takamuku, T. Otomo, and T. Yamaguchi, J. Phys. Chem. B, 110, 12372 (2006).

    Article  CAS  Google Scholar 

  11. M. N. Rodnikova and N. A. Chumaevskii, J. Struc. Chem., 47,Suppl., S151 (2006).

    Google Scholar 

  12. R. E. Gibson and O. H. Loeffler, J. Am. Chem. Soc., 63, 898 (1941).

    Article  CAS  Google Scholar 

  13. J.-Y. Huot, E. Battistel, R. Lumry, G. Villeneuve, J.-F. Lavallee, A. Anusiem, and C. Jolicoeur, J. Solut. Chem., 17, 601 (1988).

    Article  CAS  Google Scholar 

  14. L. G. Ionescu and D. S. Fung, Bull. Chem. Soc. Jpn., 54, 2503 (1981).

    Article  CAS  Google Scholar 

  15. J. P. Back, D. Oakenfull, and M. B. Smith, Biochemistry, 18, 5191 (1979).

    Article  CAS  Google Scholar 

  16. D. R. Cordray, L. R. Kaplan, P. M. Woyciesjes, and T. F. Kozak, Fluid Phase Equilib., 117, 146 (1996).

    Article  CAS  Google Scholar 

  17. A. D. Fortes and E. Suard, J. Chem. Phys., 135, 234501 (2011).

    Article  Google Scholar 

  18. D. T. Bowron, J. L. Finney, and A. K. Soper, J. Phys. Chem. B, 102, 3551 (1998).

    Article  CAS  Google Scholar 

  19. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond, Oxford, New York (1999).

    Google Scholar 

  20. A. H. Narten and S. I. Sandler, J. Chem. Phys., 71, 2069 (1979).

    Article  CAS  Google Scholar 

  21. P. G. Kusalik, A. P. Lyubartsev, D. L. Bergman, and A. Laaksonen, J. Phys. Chem. B, 104, 9526 (2000).

    Article  CAS  Google Scholar 

  22. D. Wojtkow and M. A. Czarnecki, J. Phys. Chem. A, 109, 8218 (2005).

    Article  CAS  Google Scholar 

  23. T. Fukasawa, Y. Tominaga, and A. Wakisaka, J. Phys. Chem. A, 108, 59 (2004).

    Article  CAS  Google Scholar 

  24. D. T. Bowron, J. L. Finney, and A. K. Soper, Mol. Phys., 93, 531 (1998).

    CAS  Google Scholar 

  25. K. Yoshida, T. Yamaguchi, A. Kovalenko, and F. Hirata, J. Phys. Chem. B, 106, 5042 (2002).

    Article  CAS  Google Scholar 

  26. A. H. Narten and A. Habenschuss, J. Chem. Phys., 80, 3387 (1984).

    Article  CAS  Google Scholar 

  27. G. I. Egorov and D. M. Makarov, J. Mol. Liq., 171, 29 (2012).

    Article  CAS  Google Scholar 

  28. P. W. Bridgman, Proc. Am. Acad. Arts Sci., 67, 1 (1932).

    Article  Google Scholar 

  29. V. N. Kartsev, M. N. Rodnikova, V. V. Tsepulin, K. T. Dudnikova, and V. G. Markova, Zh. Fiz. Khim., 27, 187 (1986).

    CAS  Google Scholar 

  30. R. D. Dick, J. Chem. Phys., 74, 4053 (1981).

    Article  CAS  Google Scholar 

  31. H. Kobayashi, N. Nishikido, S. Kaneshina, and M. Tanaka, Nippon Kagaku Kaishi, No. 11, 1835 (1982).

    Google Scholar 

  32. C.-F. Wong and W. Hayduk, J. Chem. Eng. Data, 35, 323 (1990).

    Article  CAS  Google Scholar 

  33. G. I. Egorov, D. M. Makarov, and A. M. Kolker, J. Chem. Eng. Data, 55, 3481 (2010).

    Article  CAS  Google Scholar 

  34. H. Kubota, Y. Tanaka, and T. Makita, Inter. J. Thermophys, 8, 47 (1987).

    Article  Google Scholar 

  35. K. R. Harris, P. J. Newitt, P. J. Back, and L. A. Woolf, High Temp.-High Press, 30, 51 (1998).

    Article  CAS  Google Scholar 

  36. G. I. Egorov, E. L. Gruznov, and A. M. Kolker, Zh. Fiz. Khim., 70, No. 1, 17 (1996).

    CAS  Google Scholar 

  37. G. I. Egorov, A. A. Syrbu, and A. M. Kolker, Zh. Fiz. Khim., 73, No. 12, 2160 (1999).

    CAS  Google Scholar 

  38. G. I. Egorov and D. M. Makarov, Rus. Zh. Fiz. Khim., 82, No. 10, 1982 (2008).

    Google Scholar 

  39. G. I. Egorov and A. M. Kolker, Rus. Zh. Fiz. Khim., 82, No. 12, 2285 (2008).

    Google Scholar 

  40. G. I. Egorov and A. M. Kolker, Rus. Zh. Fiz. Khim., 83, No. 5, 805 (2009).

    Google Scholar 

  41. G. I. Egorov and D.M. Makarov, Rus. Zh. Fiz. Khim., 83, No. 12, 2260 (2009).

    Google Scholar 

  42. G. I. Egorov, D. M. Makarov, and A. M. Kolker, Russ. Zh. Gen. Chem., 80, No. 8, 1267 (2010).

    Google Scholar 

  43. G. I. Egorov and D. M. Makarov, J. Chem. Thermodyn., 43, 430 (2011).

    Article  CAS  Google Scholar 

  44. G. I. Egorov and D. M. Makarov, J. Sol. Chem., 41, 536 (2012).

    Article  CAS  Google Scholar 

  45. G. I. Egorov, D. M. Makarov, and A. M. Kolker, J. Chem. Thermodyn., 61, 161 (2013).

    Article  CAS  Google Scholar 

  46. A. J. Gordon and R. A. Ford, The Chemist’s Companion. A Handbook of Practical Data, Techniques and References, Wiley-Interscience Publication, John Wiley and Sons, New York-London-Sydney-Toronto (1972).

    Google Scholar 

  47. F. Weissberger, E. S. Proskauer, J. A. Riddik, and E. E. Toops, Organic Solvents. Physical Properties and Methods of Purification, Interscience, New York (1955).

    Google Scholar 

  48. G. I. Egorov, E. L. Gruznov, A. M. Kolker, and G. A. Krestov, Development of the Technology for Industrial Synthetic Superhard Materials and Equipment Design [in Russian], Minsk (1990), pp. 61–66.

    Google Scholar 

  49. E. L. Gruznov, A. M. Kolker, G. I. Egorov, and L. P. Gruznov, A Device for Measuring Liquid Bulk Strength, USSR Author’s Certificate N1636724. Invention Bulletin, No. 11 (1991).

    Google Scholar 

  50. E. L. Gruznov, A. M. Kolker, G. I. Egorov, and L. P. Gruznov, A Device for Measuring Liquid Bulk Strength, USSR Author’s Certificate N1716387. Invention Bulletin, No. 8 (1992).

    Google Scholar 

  51. E. L. Gruznov, A. M. Kolker, L. P. Gruznov, G. I. Egorov, N. N. Svechina, and L. P. Gruznov, A Device for Liquid Bulk Strength, USSR Author’s Certificate N 1783909 (1992).

    Google Scholar 

  52. G. I. Egorov and D. M. Makarov, Zh. Fiz. Khim., 82, No. 6, 1175 (2008).

    Google Scholar 

  53. O. Redlich and A. T. Kister, Ind. Eng. Chem., 40, 345 (1948).

    Article  Google Scholar 

  54. H. S. Frank and M. W. Evans, J. Chem. Phys., 13, 507 (1945).

    Article  CAS  Google Scholar 

  55. W. Kauzmann, Adv. Protein Chem., 14, 1 (1959).

    Article  CAS  Google Scholar 

  56. Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects [in Russian], Khimiya, Leningrad (1989).

    Google Scholar 

  57. D. Eisenberg and W. Kauzmann, Structure and Properties of Water, Claredon Press, Oxford (1959).

    Google Scholar 

  58. N. G. Zatsepina, Physical Properties and Structure of Water [in Russian], Moscow State University Press, Moscow (1987).

    Google Scholar 

  59. A. M. Kutepov (ed.), in: Water: Structure, State, Solvation. Recent Advances [in Russian], Nauka, Moscow (2003).

    Google Scholar 

  60. Yu. I. Naberukhin, Soros Educ. J., No. 5, 41 (1996).

    Google Scholar 

  61. O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions [in Russian], Izd. AN SSSR, Moscow (1957).

    Google Scholar 

  62. A. K. Lyashchenko and V. S. Dunyashev, J. Struct. Chem., 44, No. 5, 836 (2003).

    Article  CAS  Google Scholar 

  63. T. V. Lokotosh, N. P. Malomuzh, and L. V. Zakharchenko, J. Struct. Chem., 44, No. 6, 1001 (2003).

    Article  CAS  Google Scholar 

  64. J. E. Desnoyers and G. Perron, J. Sol. Chem., 26, 749 (1997).

    Article  CAS  Google Scholar 

  65. G. I. Egorov, D. M. Makarov, and A. M. Kolker, J. Chem. Thermodyn., 61, 161 (2013).

    Article  CAS  Google Scholar 

  66. S. Sawamura, K. Nagaoka, and T. Machikawa, J. Phys. Chem. B, 105, 2429 (2001).

    Article  CAS  Google Scholar 

  67. S. Sawamura, AIP Conf. Proc., 175 (2004).

    Book  Google Scholar 

  68. D. A. Tikhonov, O. E. Kiselev, and G. N. Sarkisov, Zh. Fiz. Khim., 68, No. 8, 1397 (1994).

    CAS  Google Scholar 

  69. Y. Miyamoto, M. Takemoto, M. Hosokawa, Y. Uosaki, and T. Moriyoshi, J. Chem. Thermodyn., 22, 1007 (1990).

    Article  CAS  Google Scholar 

  70. M. Nakagawa, Y. Miyamoto, and T. Moriyoshi, J. Chem. Thermodyn., 15, 15 (1983).

    Article  CAS  Google Scholar 

  71. P. W. Bridgmen, Proc. Am. Acad. Arts Sci., 67, 1 (1932).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Egorov.

Additional information

Original Russian Text © 2013 G. I. Egorov, D. M. Makarov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 2, pp. S309–S324, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, G.I., Makarov, D.M. Bulk properties of a liquid phase mixture {ethylene glycol+tert-butanol} in the temperature range 278.15–348.15 K and pressures of 0.1-100 MPa. I. Experimental results, excess and partial molar volumes. J Struct Chem 54 (Suppl 2), 304–319 (2013). https://doi.org/10.1134/S0022476613080118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613080118

Keywords

Navigation