Skip to main content
Log in

Culation of partial molar volume and its components for molecular dynamics models of dilute solutions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This paper is a review of our recent computational studies of volumetric characteristics using computer models of dilute solutions. Partial molar volume (PMV) and its components are calculated for simple and complex molecules in water (methane, noble gases, surfactants, polypeptides). Advantages and disadvantages of various computational methods are discussed. It is proposed to use the Voronoi-Delaunay technique to determine the reasonable boundary between a solute molecule and solvent molecules and to identify the PMV components related to the molecule, the boundary layer, and the solvent. It is noted that the observed increase in PMV with temperature for large molecules is due to an increase in the volume of voids in the boundary layer, i.e., due to the “thermal volume.” In this case, the solvent gives a negative contribution to the PMV. In contrast, for simple molecules (methane), the contribution from the solvent is positive and is the main factor in the increase in the PMV, which is associated with a specific change in water structure around a spherical hydrophobic particle outside the boundary layer. For surfactant molecules, the contribution from the solvent changes sign (from negative to positive) with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Chalikian, Annu. Rev. Biophys. Biomol. Struct., 32, 207–235 (2003).

    Article  CAS  Google Scholar 

  2. L. Mitra, N. Smolin, R. Ravindra, C. Royer, and R. Winter, Phys. Chem. Chem. Phys., 8, 1249–1265 (2006).

    Article  CAS  Google Scholar 

  3. K. Akasaka, A. R. Latif, A. Nakamura, K. Matsuo, H. Tachibana, and K. Gekko, Biochemistry, 46, 10444–10450 (2007).

    Article  CAS  Google Scholar 

  4. R. Ravindra, C. Royer, and R. Winter, Phys. Chem. Chem. Phys., 6, 1952–1961 (2004).

    Article  CAS  Google Scholar 

  5. R. Filfil and T. V. Chalikian, J. Mol. Biol., 299, 827–842 (2000).

    Article  CAS  Google Scholar 

  6. J. Rösgen and H. J. Hinz,, Biophys. Chem., 83, 61–71 (2000).

    Article  Google Scholar 

  7. M. Haeckel, H.-J. Hinza, and G. R. Hedwig, Biophys. Chem., 82, 35–50 (1999).

    Article  Google Scholar 

  8. T. Kamiyama and K. Gekko, Chem. Lett., 10, 1063/1064 (1997).

    Google Scholar 

  9. T. V. Chalikian, M. Totrov, T. Abagyan, and K. J. Breslauer, J. Mol. Biol., 260, 588–603 (1996).

    Article  CAS  Google Scholar 

  10. E. A. Moelwyn-Hughes, Physical Chemistry, Book 2, Izd. Inostr. Lit., Moscow (1962).

    Google Scholar 

  11. A. Yu. Tsivadze (ed.), in: Theoretical and Experimental Methods of Solution Chemistry, (Problems of Solution Chemistry), Chapter 8, Densitometry of Solutions, 425–463, Prospekt, Moscow (2011).

    Google Scholar 

  12. M. Marchi, J. Phys. Chem. B, 107, 6598–6602 (2003).

    Article  CAS  Google Scholar 

  13. C. Klofutar, J. Horvat, and D. Rudan-Tasič, Acta Chim. Slov., 53, 274–283 (2006).

    CAS  Google Scholar 

  14. I. Brovchenko, R. R. Burri, A. Krukau, A. Oleinikova, and R. Winter, J. Chem. Phys., 129, 195101 (2008).

    Article  CAS  Google Scholar 

  15. V. P. Voloshin, N. N. Medvedev, M. N. Andrews, R. R. Burri, R. Winter, and A. Geiger, J. Phys. Chem. B, 115, 14217–14228 (2011).

    Article  CAS  Google Scholar 

  16. T, Imai Cond. Matter Phys., 10, No. 3(51), 343–361 (2007).

    Google Scholar 

  17. R. A. Pierotti, J. Phys. Chem., 69, 281–288 (1965).

    Article  CAS  Google Scholar 

  18. D. P. Kharakoz, J. Solut. Chem., 21, 569 (1992).

    Article  CAS  Google Scholar 

  19. H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys., 31, 369 (1959).

    Article  CAS  Google Scholar 

  20. F. H. Stillinger, J. Solut. Chem., 2, 141 (1973).

    Article  CAS  Google Scholar 

  21. F. M. Richards, Methods Enzymol., 115, 440–646 (1985).

    Article  CAS  Google Scholar 

  22. M. J. Connolly, J. Appl. Crystallogr., 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  23. M. L. Connolly, J. Am. Chem. Soc., 107, 1118–1124 (1985).

    Article  CAS  Google Scholar 

  24. J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam, Proteins: Struct. Funct. Genet., 33, 1–17 (1998).

    Article  CAS  Google Scholar 

  25. N. Patel, D. N. Dubins, R. Pomes, and T. V. Chalikian, J. Phys. Chem. B, 115, 4856–4862 (2011).

    Article  CAS  Google Scholar 

  26. T. Imai, A. Kovalenko, and F. Hirata, J. Phys. Chem. B, 109, 6658–6665 (2005).

    Article  CAS  Google Scholar 

  27. J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 19, 774 (1951).

    Article  CAS  Google Scholar 

  28. A. Ben-Naim, Molecular Theory of Solutions, Oxford University Press, Oxford (2006).

    Google Scholar 

  29. N. Matubayas and R. M. Levy, J. Phys. Chem., 100, 2681–2688 (1996).

    Article  Google Scholar 

  30. M. S. Moghaddam and Hue Sun Chan., J. Chem. Phys., 126, 114507 (2007).

    Article  Google Scholar 

  31. A. V. Sangwai and H. S. Ashbaugh, Ind. Eng. Chem. Res., 47, 5169–5174 (2008).

    Article  CAS  Google Scholar 

  32. D. Chandler, J. Chem. Phys., 59, 2742–2747 (1973).

    Article  CAS  Google Scholar 

  33. J.-P. Hansen, and I. R. McDonald, Theory of Simple Liquids, 3rd ed., Academic Press, London (2006).

    Google Scholar 

  34. Song-Ho Chong and F. Hirata, J. Phys. Chem. B, 101, 3209–3220 (1997).

    Article  CAS  Google Scholar 

  35. T. Imai, M. Kinoshita, and F. Hirata, J. Chem. Phys., 112, 9469 (2000).

    Article  CAS  Google Scholar 

  36. I. Brovchenko, M. N. Andrews, and A. Oleinikova, Phys. Chem. Chem. Phys., 12, 4233–4238 (2010).

    Article  CAS  Google Scholar 

  37. I. Yu, T. Tasaki, K. Nakada, and M. Nagaoka, J. Phys. Chem. B, 114, 12392–12397 (2010).

    Article  CAS  Google Scholar 

  38. H. S. Ashbaugh, L. Liu, and L. N. Surampudi, J. Chem. Phys., 135, 054510 (2011).

    Article  Google Scholar 

  39. A. C. Moskalev, Bachelor’s Diploma: Investigation of Hydration Shells of Molecules of Noble Gases in Aqueous Solutions, Novosibirsk State University (2012).

    Google Scholar 

  40. M. N. Andrews and R. Winter, Biophys. Chem., 156, 43–50 (2011).

    Article  CAS  Google Scholar 

  41. N. V. Plyasunova, A. V. Plyasunov, and E. L. Shock, Intern. J. Thermophys., 25, 351–360 (2004).

    Article  CAS  Google Scholar 

  42. A. S. Moskalev, A. V. Anikeenko, N. N. Medvedev, and A. Geiger, Book of Abstracts. EMLG-JMLG Annual Meeting (2013).

    Google Scholar 

  43. J. L. F. Abascal and C. Vega, J. Chem. Phys., 123, 234505 (2005).

    Article  CAS  Google Scholar 

  44. H. L. Pi, J. L. Aragones, C. Vega, E. G. Noya, J. L. F. Abascal, M. A. Gonzalez, and C. McBride, Mol. Phys., 107, 365–374 (2009).

    Article  CAS  Google Scholar 

  45. S. K. Pal, J. Peon, and A. H. Zewail, PNAS, 99, 1763–1768 (2002).

    Article  CAS  Google Scholar 

  46. A. Ben-Naim, J. Chem. Phys., 128, 234501 (2008).

    Article  Google Scholar 

  47. F. Hirata, Molecular Theory of Solvation (Understanding Chemical Reactivity), Kluwer Academic Publishers, Boston (2003).

    Google Scholar 

  48. J. Liang, Computational Methods for Protein Structure Prediction and Modeling. Biological and Medical Physics Biomedical Engineering, Springer, New York (2007), pp. 181–206.

    Book  Google Scholar 

  49. V. P. Voloshin, A. V. Anikeenko, N. N. Medvedev, and A. Geiger, Proc. 9th Int. Symp. on Voronoi Diagrams in Science and Engineering (ISVD 2011), June 28th–30th, Qingdao, China (2011), pp. 170–176.

    Google Scholar 

  50. F. Cazals, H. Kanhere, and S. Loriot, ACM Trans. Math. Softw. (2011), p. 3.

    Google Scholar 

  51. A. V. Kim, N. N. Medvedev, and A. Geiger, J. Mol. Liq., 189, 74–80 (2013).

    Article  Google Scholar 

  52. Computational Geometry Algorithms Library (CGAL). http://www.cgal.org

  53. A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial Tessellations — Concepts and Applications of Voronoi Diagrams. Wiley, New York (2000).

    Google Scholar 

  54. N. N. Medvedev, Voronoi-Delaunay Method in Studies of Non-Crystalline Systems, Izd. SO RAN, Novosibirsk (2000).

    Google Scholar 

  55. V. P. Voloshin, A. V. Anikeenko, N. N. Medvedev, A. Geiger, and D. Stoyan, Proc.7th Int. Symp. on Voronoi Diagrams in Science and Engineering, Quebec, 28–30. Quebec, Canada (2010), pp. 254–259.

    Google Scholar 

  56. G. F. Voronoi, J. Reine Angew Math., 136, 67 (1909).

    Google Scholar 

  57. B. N. Delaunay, Proc. Int. Math. Congress, Toronto, August 11–16 (1924); University of Toronto, Press: Toronto (1928); pp. 695–700.

    Google Scholar 

  58. S. V. Anishchik and N. N. Medvedev, Phys. Rev. Lett., 75, 4314–4317 (1995).

    Article  CAS  Google Scholar 

  59. M. G. Alinchenko, A. V. Anikeenko, N. N. Medvedev, V. P. Voloshin, M. Mezei, and P. Jedlovszky, J. Phys. Chem. B, 108, 19056–19067 (2004).

    Article  CAS  Google Scholar 

  60. N. N. Medvedev, V. P. Voloshin, V. A. Luchnikov, and M. L. Gavrilova, J. Comput. Chem., 27, 1676–1692 (2006).

    Article  CAS  Google Scholar 

  61. D.-S. Kim, Y. Cho, and K. Sugihara, Computer-Aided Design, 42, No. 10, 874–888 (2010).

    Article  Google Scholar 

  62. F. Aurenhammer, SIAM J. Comput., 16, 78–96 (1987).

    Article  Google Scholar 

  63. P. Procacci and R. Scateni, Int. J. Quantum Chem., 42, 1515–1528 (1992).

    Article  CAS  Google Scholar 

  64. E. Paci and M. Marchi, PNAS, 93, 11609–11614 (1996).

    Article  CAS  Google Scholar 

  65. V. Lounnas and B. M. Pettitt, Proteins: Struct., Funct., Genet., 18, 133–147 (1994).

    Article  CAS  Google Scholar 

  66. A. V. Kim, V. P. Voloshin, N. N. Medvedev, and A. Geiger, Proc. Int. Symp. on Voronoi Diagrams in Science and Engineering, Rutgers University, USA. June 27–29, 2012, p. 95–102.

    Google Scholar 

  67. A. V. Kim, V. P. Voloshin, N. N. Medvedev, and A. Geiger, Trans. Comp. Sci. J.i, Springer (2013).

    Google Scholar 

  68. V. P. Voloshin and N. N. Medvedev, Proc. Int. Symp. on Voronoi Diagrams in Science and Enginering, St. Petersburg, Russia, July 8–10 (2013) (in preparation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Medvedev.

Additional information

Original Russian Text © 2013 N. N. Medvedev, V. P. Voloshin, A. V. Kim, A. V. Anikeenko, A. Geiger.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 2, pp. S276–S293, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, N.N., Voloshin, V.P., Kim, A.V. et al. Culation of partial molar volume and its components for molecular dynamics models of dilute solutions. J Struct Chem 54 (Suppl 2), 271–288 (2013). https://doi.org/10.1134/S0022476613080088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613080088

Keywords

Navigation