Skip to main content
Log in

Cluster structure of water in accordance with the data on dielectric permittivity and heat capacity

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In the work the character of water clusterization in the whole existence domain of its liquid state is discussed: from supercooled states to the critical point. Conclusions about the cluster composition of liquid water are drawn based on the analysis: 1) of the features of dielectric relaxation; 2) character of the temperature dependence of its static dielectric permittivity, and 3) the value and temperature dependence of different contributions to the heat capacity of the system. It is shown that near the water crystallization point tetramers prevail in its structure, with an increase in the temperature trimers start to play the main role, and near the critical point of water dimers become the major associates. At temperatures near the water crystallization point the obtained results well agree with the data on emission and absorption X-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhao and D. G. Truhlar, J. Phys. Chem., A110, 5121 (2006).

    Article  Google Scholar 

  2. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University, New York (1969).

    Google Scholar 

  3. A. Mogelhoy, A. Kelkhanen, and K. T. Wikfeldt, J. Phys. Chem. B, 115, 14149 (2011).

    Article  Google Scholar 

  4. V. L. Kulinskii, N. P. Malomuzh, and O. I. Matvejchuk, Physica A, 388, 4560 (2009).

    Article  CAS  Google Scholar 

  5. A. Nilsson and L. G. M. Petterson, Chem. Phys., 389, 1 (2011).

    Article  CAS  Google Scholar 

  6. J.-H. Guo, J. Luo, and A. Augustsson, Phys. Rev. Lett., 89, 137402 (2002).

    Article  Google Scholar 

  7. P. Vernet and D. Nordlund, Science, 304, 995 (2004).

    Article  Google Scholar 

  8. S. V. Lishchuk, N. P. Malomuzh, and P. V. Makhlaichuk, Phys. Lett. A, 375, 2656 (2011).

    Article  CAS  Google Scholar 

  9. Ya. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  10. A. Rahman, Phys. Rev. A, 136, 405 (1964).

    Article  CAS  Google Scholar 

  11. C. A. Kroxton, Liquid State Physics — A Statistical Mechanical Introduction, Cambridge University Press, Cambridge (1974).

    Book  Google Scholar 

  12. L. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, J. Mol. Liq., 137, 1 (2008).

    Article  CAS  Google Scholar 

  13. T. V. Lokotosh, N. P. Malomuzh, and K. N. Pankratov, J. Chem. Eng. Data, 55, 2021 (2010).

    Article  CAS  Google Scholar 

  14. L. A. Bulavin, A. I. Fisenko, and N. P. Malomuzh, Chem. Phys. Lett., 453, 183 (2008).

    Article  CAS  Google Scholar 

  15. L. A. Bulavin, V. L. Kulinskii, and N. P. Malomuzh, J. Mol. Liq., 161, 19 (2011).

    Article  CAS  Google Scholar 

  16. A. I. Fisenko and N. P. Malomuzh, Chem. Phys., 345, 164 (2008).

    Article  CAS  Google Scholar 

  17. A. I. Fisenko and N. P. Malomuzh, Int. J. Mol. Sci., 10, 2383 (2009).

    Article  CAS  Google Scholar 

  18. K. Okada, M. Yao, Y. Hiejima, H. Kohno, and Y. Kojihara, J. Chem. Phys., 110, 3026 (1999).

    Article  CAS  Google Scholar 

  19. H. R. Pruppacher, J. Chem. Phys., 56, 101 (1972).

    Article  CAS  Google Scholar 

  20. K. Simpson and M. Karr, Phys. Rev., 17, 342 (1958).

    Google Scholar 

  21. K. A. Valiev and E. N. Ivanov, Usp. Fiz. Nauk, 109, 31 (1973).

    Article  CAS  Google Scholar 

  22. R. C. West (ed.), CRS Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data, 67th ed, CRS Press, Boca Raton (1996).

    Google Scholar 

  23. J. Teixeira, M.-C. Bellissent-Funel, S.-H. Chen, and J. Dianoux, Phys. Rev., A31, 1913 (1985).

    Article  Google Scholar 

  24. P. Blanckenhagen, Ber. Bunsenges. Phys. Chem., 76, 891 (1972).

    Google Scholar 

  25. S. Magazu, F. Migliardo, and M. T. F. Telling, J. Phys. Chem. B, 110, 1020 (2006).

    Article  CAS  Google Scholar 

  26. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson, and A. Nilsson, Science, 304, 995 (2004).

    Article  CAS  Google Scholar 

  27. H. Fröhlich,, Theory of Dielectrics, Oxford University Press, London (1958).

    Google Scholar 

  28. D. P. Fernandez, Y. Mulev, A. R. H. Goodwin, et al., J. Phys. Chem. Ref. Data, 24, No. 1, 33–69 (1995).

    Article  CAS  Google Scholar 

  29. M. Uematsy and E. U. Frank, J. Phys. Chem. Ref. Data, 9, No. 4, 1291–1306 (1980).

    Article  Google Scholar 

  30. A. D. Chistyakov, Zh. Fiz. Khim., 81, No. 1, 11 (2007).

    Google Scholar 

  31. V. N. Makhlaichik and S. V. Khrapatyi, Zh. Fiz. Khim., (2013), (to be published).

    Google Scholar 

  32. N. K. Frank, J. D. Cruzan, and R. J. Saykally, Chem. Rev., 103, 2533–2577 (2003).

    Article  Google Scholar 

  33. J. K. Gregory, D. C. Clary, K. Liu, M. G. Brown, and R. J. Saykally, Science, 275, 814 (1997).

    Article  CAS  Google Scholar 

  34. J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, J. Phys. Chem. A, 101, 5211–5214 (1997).

    Article  CAS  Google Scholar 

  35. V. L. Kulinskii and N. P. Malomuzh, in: Soft Matter under Exogenic Impacts. NATO Science Series II, J. Rzoska and V. A. Mazur (eds.), 242, 287–301 (2007).

    Article  CAS  Google Scholar 

  36. L. Wang, J. Zhao, and H. Fang, J. Phys. Chem. C, 112, 11779–11785 (2008).

    Article  CAS  Google Scholar 

  37. F. H. Stillinger and C. W. David, J.Chem. Phys., 69, 1473 (1978).

    Article  CAS  Google Scholar 

  38. Jongseob Kim, Seung Bum Suh, and Kwang S. Kim, J. Chem. Phys., 111, 10077 (1999).

    Article  CAS  Google Scholar 

  39. C. N. Ramachandran and N. Sathyamurthy, Chem. Phys. Lett., 410, 348–351 (2005).

    Article  CAS  Google Scholar 

  40. L. Wang et al., J. Phys. Chem. C, 112, No. 31, 16417–16421 (2008).

    Google Scholar 

  41. D. J. Wales and M. P. Hodgesr, Chem. Phys. Lett., 286, 65–72 (1998).

    Article  CAS  Google Scholar 

  42. P. V. Makhlaichik, M. P. Malomuzh, and I. V. Zhuganiuk, Ukrain. J. Phys., 58, No. 3, 278–288 (2013).

    Google Scholar 

  43. P. V. Makhlaichik, M. P. Malomuzh, and I. V. Zhuganiuk, Ukrain. J. Phys., 58. (to be published) (2013).

  44. A. Oleinikova, I. Brovchenko, N. Smolin, A. Krukau, A. Geiger, and R. Winter, Phys. Rev. Lett., 95, 247802 (2005).

    Article  Google Scholar 

  45. L. B. Partay, P. Jedlovszky, I. Brovchenko, and A. Oleinikova, Phys. Chem. Chem. Phys., 9, 1341–1346 (2007).

    Article  CAS  Google Scholar 

  46. L. Pártay and P. Jedlovszky, J. Chem. Phys., 123. 024502 (2005).

    Article  Google Scholar 

  47. K. M. Benjamin, A. J. Schultz, and D. A. Kofke, Ind. Eng. Chem. Res., 45, 5566–5573 (2006).

    Article  CAS  Google Scholar 

  48. N. Goldman, R. S. Fellers, C. Leforestier, and R. J. Saykally, J. Phys. Chem. A, 105, No. 3, 515–519 (2001).

    Article  CAS  Google Scholar 

  49. Y. Scribano, N. Goldman, R. J. Saykally, and C. Leforestier, J. Phys. Chem. A, 110, 5411–5419 (2006).

    Article  CAS  Google Scholar 

  50. J. Hargrove, Chem. Phys. Discuss., 7, 11123–11140 (2007).

    Article  Google Scholar 

  51. V. I. Serdyukov, L. N. Sinitsa, and Yu. A. Poplavskii, Pis’ma v Zh. Teor. i Èksp. Fiz., 89, No. 1, 12–15 (2009).

    Google Scholar 

  52. I. A. Gorchakova, G. V. Chlenova, and A. A. Vigasin, Optika Atmosfery i Okeana, 22, No. 6, 546–551 (2009).

    Google Scholar 

  53. A. H. Harvey and E. W. Lemmon J. Phys. Chem. Ref. Data, 33, 369 (2004).

    Article  CAS  Google Scholar 

  54. G. T. Evans and V. Vaida, J. Chem. Phys., 113, 6652 (2000).

    Article  CAS  Google Scholar 

  55. L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys., 71(6), 2703–2711 (1979).

    Article  CAS  Google Scholar 

  56. A. A. Vigasin, A. I. Pavlyuchko, Y. Jin, and S. Ikawa, J. Mol. Struct., 742, 173–181 (2005).

    Article  CAS  Google Scholar 

  57. L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Part 1, Nauka, Moscow (1976).

    Google Scholar 

  58. Ya. I. Frenkel, Kinetic Theory of Liquids. [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Malomuzh.

Additional information

Original Russian Text © 2013 N. P. Malomuzh, V. N. Makhlaichuk, P. V. Makhlaichuk, K. N. Pankratov.

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 2, pp. S210–S225, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malomuzh, N.P., Makhlaichuk, V.N., Makhlaichuk, P.V. et al. Cluster structure of water in accordance with the data on dielectric permittivity and heat capacity. J Struct Chem 54 (Suppl 2), 205–220 (2013). https://doi.org/10.1134/S0022476613080039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613080039

Keywords

Navigation