Skip to main content
Log in

Stepwise magnetic behavior of the liquid crystal iron(III) complex

  • Current NMR and EPR Spectroscopy Methods in Structural Chemistry of Complex Crystals, Glasses, Composites, and Biological Membranes
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

EPR and Mössbauer spectroscopy is used to study a new liquid crystal complex of iron(III) with a Schiff base: 4,4′-dodecyloxybenzoyloxybenzoyl-4-oxysalicylidene-2-aminopyridine with a PF 6 counterion. It is shown that Fe(III) ions exist only in the high-spin (HS, S = 5/2) state. It is found that under the influence of temperature the system demonstrates the stepwise behavior of the product of the integrated intensity of EPR lines (I) and temperature (proportional to χ T, where χ is the magnetic susceptibility) with an inflection point at ∼80 K. Above 80 K a new EPR spectrum is detected due to the excited S = 2 state and the formation of dimeric molecules (through oxygen bridges) with a strong intramolecular antiferromagnetic exchange interaction J 1 = 162.1 cm−1. Below 80 K iron(III) complexes are organized in 1D chains where the exchange value J 2 = 2.1 cm−1. At 80 K there is a structural phase transition in the system: the transition from a 1D chain organization of HS Fe(III) centers to dimeric molecules. Based on quantum chemical calculations a model of the binuclear iron(III) complex is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gütlich and H. A. Goodwin (eds.), in: Spin Crossover in Transition Metal Compounds I, Topics in Current Chemistry, v. 233, Springer, Heidelberg (2004).

    Google Scholar 

  2. S. Hayami, Z. Gu, M. Shiro, Y. Einaga, A. Fujishima, O. Sato, J. Am. Chem. Soc., 122, 7126/7127 (2000).

    Google Scholar 

  3. E. Pretsch, P. Bühlmann, and C. Affolter, Structure Determination of Organic Compounds, Tables of Spectral Data, Springer (2000).

    Book  Google Scholar 

  4. H. Becker, R. Beckert, W. Berger, et al., Organikum, v. 1, Berlin (2008).

  5. A. A. Saleh, A. M. Tawfik, S. M. Abu-El-wafa, and H. F. Osman, J. Coord. Chem., 57, No. 14, 1191–1204 (2004).

    Article  CAS  Google Scholar 

  6. S. Chandra and U. Kumar, Spectrochim. Acta, Part A, 61, Nos. 1/2, 219–224 (2005).

    Google Scholar 

  7. T. M. A. Ismail, J. Coord. Chem., 59, No. 3, 255–270 (2006).

    Article  CAS  Google Scholar 

  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  9. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1997).

    Article  CAS  Google Scholar 

  10. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  11. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  12. D. N. Laikov, PRIRODA, Electronic Structure Code, Version 5 (2005).

    Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT (2009).

    Google Scholar 

  14. F. Neese, ORCA — an Ab Initio, Density Functional and Semiempirical Program Package, 2.8, University of Bonn, Bonn, Germany (2011).

    Google Scholar 

  15. D. N. Laikov, Development of the Economical Approach to the Calculation of Molecules by the Density Functional Theory Method and Its Application to the Solution of Complex Chemical Problems [in Russian], Diss. ... Cand. of Phys.-Math. Sc., Moscow State University (2000).

    Google Scholar 

  16. A. Schafer, H. Horn, and R. Ahlrichs, J. Chem. Phys., 100, 5829–5835 (1994).

    Article  Google Scholar 

  17. L. Noodleman and J. G. Norman, J. Chem. Phys., 70, 4903–4906 (1979)

    Article  CAS  Google Scholar 

  18. L. Noodleman, J. Chem. Phys., 74, 5737–5743 (1981)

    Article  CAS  Google Scholar 

  19. L. Noodleman and E. R. Davidson, Chem. Phys., 109, 131–143 (1986)

    Article  Google Scholar 

  20. L. Noodleman and D. A. Case, Adv. Inorg. Chem., 38, 423–470 (1992).

    Article  CAS  Google Scholar 

  21. E. Ruiz, J. Cano, S. Alvarez and P. Alemany, J. Comp. Chem., 20, 1391–1400 (1999)

    Article  CAS  Google Scholar 

  22. E. Ruiz, A. Rodriguez- Fortea, J. Cano, S. Alvarez, and P. Alemany, J. Comp. Chem., 24, 982–989 (2003)

    Article  CAS  Google Scholar 

  23. E Ruiz., S. Alvarez, J. Cano, and V. Polo, J. Chem. Phys., 123, 164110 (2005).

    Article  Google Scholar 

  24. E. Ruiz, P. Alemany, S. Alvarez and J. Cano, J. Am. Chem. Soc., 119, 1297–1303 (1997)

    Article  CAS  Google Scholar 

  25. E. Ruiz, J. Cano, S. Alvarez and P. Alemany, J. Am. Chem. Soc., 120, 11122–11129 (1998)

    Article  CAS  Google Scholar 

  26. E. Ruiz, J. Cano, S. Alvarez, A. Caneschi, and D. Gatteschi, J. Am. Chem. Soc., 125, 6791–6794 (2003)

    Article  CAS  Google Scholar 

  27. P. Ghosh, E. Bill, T. Weyhermuller, F. Neese, and K. Wieghardt, J. Am. Chem. Soc., 125, 1293–1308 (2003)

    Article  CAS  Google Scholar 

  28. J. Cano, R. Costa, S. Alvarez, and E. Ruiz, J. Chem. Theory and Comput., 3, 782–788 (2007)

    Article  CAS  Google Scholar 

  29. E. M. Zueva, M. M. Petrova, R. Herchel, Z. Trávníček, R. Raptis, L. Mathivathanan, and J. E. McGrady, Dalton Trans., 30, 5924–5932 (2009).

    Article  Google Scholar 

  30. H. H. Wickman, M. P. Klein, and D. A. Shirley, J. Chem. Phys., 42, No. 6, 2113–2117 (1965).

    Article  CAS  Google Scholar 

  31. R. Aasa, J. Chem. Phys., 52, No. 8, 3919–3930 (1970).

    Article  CAS  Google Scholar 

  32. B. Weber, C. Carbonera, C. Desplances, and J-F. Letard, Eur. J. Inorg. Chem., 10, 1589–1598 (2008).

    Article  Google Scholar 

  33. A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, and F. Varret, J. Phys. I, France, 2, 1381–1403 (1992).

    Article  CAS  Google Scholar 

  34. H. Spiering, T. Kohlhaas, H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz, and P. Gutlich, Coord. Chem. Rev., 190–192, 629–647 (1999).

    Article  Google Scholar 

  35. B. Weber and E.-G. Jager, Eur. J. Inorg. Chem., 4, 465–477 (2009).

    Article  Google Scholar 

  36. H. Weihe and H. U. Güdel, J. Am. Chem. Soc., 119, 6539–6543 (1997).

    Article  CAS  Google Scholar 

  37. C. J. O’Connor, Progr. Inorg. Chem., 29, 203–283 (2007).

    Article  Google Scholar 

  38. D. Collison and A. K. Powell, Inorg. Chem., 29, 4735–4746 (1990).

    Article  CAS  Google Scholar 

  39. R. Dingle, M. E. Lines, and S. L. Holt, Phys. Rev., 187, 643–648 (1969).

    Article  CAS  Google Scholar 

  40. R. L. Carlin, R. Burriel, J. A. Rojo, and F. Palacio, Inorg. Chem., 23, No. 15, 2213–2215 (1984).

    Article  CAS  Google Scholar 

  41. N. Bouslimani, N. Clement, G. Rogez, P. Turek, M. Bernard, S. Dagorne, D. Martel, H. N. Cong, and R. Welter, Inorg. Chem., 47, 7623–7630 (2008).

    Article  CAS  Google Scholar 

  42. J. Owen, J. Appl. Phys., 32, 213S–217S (1961).

    Article  Google Scholar 

  43. M. Y. Okamura and B. M. Hoffman, J. Chem. Phys., 51, 3128/3129 (1969).

    Article  Google Scholar 

  44. A. Ozarowski, B. R. McGarvey, and J. E. Drake, Inorg. Chem., 34, No. 22, 5558–5566 (1995).

    Article  CAS  Google Scholar 

  45. H. Wickman, M. P. Klein, and D. A. Shirley, Phys. Rev., 152, No. 1, 345–357 (1966).

    Article  CAS  Google Scholar 

  46. A. I. Aleksanderov, T. V. Pashkova, D. V. Barakhtenko, M. S. Gruzdev, and U. V. Chervonova, Zhidkie Kristally, 4, No. 38, 14–22 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Domracheva.

Additional information

Original Russian Text Copyright © 2013 by N. E. Domracheva, V. E. Vorob’eva, A. V. Pyataev, R. A. Manapov, E. M. Zueva, M. S. Gruzdev, U. V. Chervonova

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 1, pp. S20–S31, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domracheva, N.E., Vorob’eva, V.E., Pyataev, A.V. et al. Stepwise magnetic behavior of the liquid crystal iron(III) complex. J Struct Chem 54 (Suppl 1), 16–27 (2013). https://doi.org/10.1134/S0022476613070020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613070020

Keywords

Navigation