Skip to main content
Log in

Insight into the chemical bonding and electrostatic potential: A charge density study on a quinazoline derivative

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

2,3-Trimethylene-3,4-dihydroquinazoline shares the heterocyclic core with natural compounds and synthetic drugs. The hydrochloride of the compound forms excellent dihydrate crystals which have allowed us to collect high-resolution X-ray diffraction data and obtain the experimental charge density. The solid may be understood as built up from pairs of heterocyclic cations and chloride anions; a direct hydrogen bond links the halide to the formally cationic pyrimidine NH group. The hydrate water molecules interact with the anions, forming an infinite chain along the crystallographic a axis between the stacks of the heterocyclic cations. Based on the experimental charge density, a dipole moment of 16.1 Debye is calculated for a pair of the hydrogen-bonded quinazolinium cation and the chloride anion in the extended crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Johne, Pharmazie, 36, 583 (1981).

    CAS  Google Scholar 

  2. M. V. Telezhenetskaya and S. Yu. Yunusov, Chem. Natur. Comp., 13, No. 6, 731 (1977).

    Article  Google Scholar 

  3. S. Yu. Yunusov, N. Tulyaganov, M. V. Telezhenetskaya, et al., USSR Patent No. 605614, Anticholinesterase Agent, Byull. Izobret. (Russ.) (1978), p. 17.

    Google Scholar 

  4. C. S. Harris, L. Hennequin, R. Morgentin, et al., Targets in Heterocyclic Systems, 14, 315 (2010).

    CAS  Google Scholar 

  5. P. Coppens, X-Ray Charge Densities and Chemical Bonding, Oxford University Press, New York (1997).

    Google Scholar 

  6. S. Mebs, A. Lueth, W. Loewe, et al., Zeitschrift für Kristallographie, 223, No. 8, 502 (2008).

    Article  CAS  Google Scholar 

  7. T. Khaliq, P. Misra, S. Gupta, et al., Bioorg. Med. Chem. Lett., 19, No. 9, 2585 (2009).

    Article  CAS  Google Scholar 

  8. Kh. N. Khashimov, M. V. Telezhenetskaya, and S. Yu. Yunusov, Chem. Natur. Comp., 5, No. 5, 456 (1969).

    Article  CAS  Google Scholar 

  9. Kh. M. Shakhidoyatov, A. Irisbaev, L. M. Yun, et al., Chem. Heterocycl. Comp., 12, No. 11, 1286 (1976).

    Article  Google Scholar 

  10. Kh. M. Shakhidoyatov and I. K. Kaisarov, Chem. Natur. Comp., 34, No. 1, 59 (1998).

    Article  CAS  Google Scholar 

  11. K. C. Jahng, S. I. Kim, D. H. Kim, et al., Chem. Pharm. Bull., 56, No. 4, 607 (2008).

    Article  CAS  Google Scholar 

  12. A. Al-Shamma, S. Drake, D. L. Flynn, et al., J. Nat. Prod., 44, No. 6, 745 (1981).

    Article  CAS  Google Scholar 

  13. A. G. Tojiboev, K. K. Turgunov, B. Tashkhodjaev, et al., Chem. Natur. Comp., 42, No. 3, 280 (2006).

    Google Scholar 

  14. B. Tashkhodzhaev, L. V. Molchanov, K. K. Turgunov, et al., Chem. Natur. Comp., 31, No. 3, 421 (1995).

    Google Scholar 

  15. N. K. Hansen and P. Coppens, Acta Crystallogr. Sect. A, 34, 909 (1978).

    Article  Google Scholar 

  16. SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA (1999).

  17. SADABS: Program for Empirical Absorption Correction of Area Detector Data, V 2004/1, Bruker AXS Inc., Madison, WI, USA (2004).

  18. G. M. Sheldrick, Acta Crystallogr. Sect. A, 64, 112 (2008).

    Article  CAS  Google Scholar 

  19. H. D. Flack, Acta Crystallogr. Sect. A, 39, No. 6, 876 (1983).

    Article  Google Scholar 

  20. A. Volkov et al., XD2006, Univ. New York at Buffalo, USA (2006).

    Google Scholar 

  21. F. L. Hirshfeld, Acta Crystallogr. Sect. A, 32, No. 2, 239 (1976).

    Article  Google Scholar 

  22. M. J. Frisch et al., Gaussian 09, Revision A-02, Gaussian, Inc., Wallingfort CT, USA (2009).

    Google Scholar 

  23. T. H. Dunning, J. Chem. Phys., 90, No. 2, 1007 (1989).

    Article  CAS  Google Scholar 

  24. A. L. Spek, Acta Crystallogr. Sect. D, 65, No. 2, 148 (2009).

    Article  CAS  Google Scholar 

  25. R. F. W. Bader, Atoms in Molecules a Quantum Theory, Clarendon Press, Oxford (1990).

    Google Scholar 

  26. M. Serb, R. Wang, M. Meven, et al., Acta Crystallogr. Sect. B, 67, No. 6, 552 (2011).

    Article  CAS  Google Scholar 

  27. P. Gilli, V. Bertolasi, V. Ferretti, et al., J. Am. Chem. Soc., 116, No. 3, 909 (1994).

    Article  CAS  Google Scholar 

  28. C. B. Hübschle and B. Dittrich, J. Appl. Crystallogr., 44, No. 1, 238 (2011).

    Article  Google Scholar 

  29. M. Mladenovic, M. Arnone, and R. F. Fink, J. Phys. Chem., 113, No. 15, 5072 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tojiboev.

Additional information

Original Russian Text © 2013 A. Tojiboev, R. Wang, F. Pan, U. Englert, K. Turgunov, R. Okmanov

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 54, No. 6, pp. 980–985, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tojiboev, A., Wang, R., Pan, F. et al. Insight into the chemical bonding and electrostatic potential: A charge density study on a quinazoline derivative. J Struct Chem 54, 1012–1017 (2013). https://doi.org/10.1134/S0022476613060036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613060036

Keywords

Navigation