Journal of Structural Chemistry

, Volume 54, Issue 5, pp 952–959 | Cite as

Tautomerism of substituted salicylaldehyde and 2-diphenylphosphinebenzaldehyde 1′-phthalazinylhydrazones: X-ray crystallography and quantum chemical modeling

  • S. I. Levchenkov
  • L. D. Popov
  • I. N. Shcherbakov
  • G. G. Aleksandrov
  • A. A. Zubenko
  • V. A. Kogan
Article

Abstract

1′-Phthalazinylhydrazones of salicylaldehyde, its substituted derivatives, and 2-diphenylphosphine-benzaldehyde are synthesized and studied. A description is given of the structures salicylaldehyde 1′-phthalazinylhydrazone (1a) and 2-diphenylphosphinebenzaldehyde 1′-phthalazinylhydrazone (2), which exist in the crystal in the hydrazonophthalazone tautomeric form. Molecules of hydrazone 1a form in the crystal infinite stacks of hydrogen bonded dimers with intermolecular π-stacking interactions. A quantum chemical calculation is made of the geometry and total energy of the possible tautomers in vacuum and in aqueous and chloroform solutions. The hydrazonophthalazone tautomers are shown to be the most stable in all cases. The X-ray crystallography results are compared with the calculated data.

Keywords

hydrazones tautomerism X-ray crystallography hydrogen bond density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Zelenin, L. A. Khorseeva, and V. V. Alekseev, Pharm. Chem. J., 26, No. 5, 395 (1992).CrossRefGoogle Scholar
  2. 2.
    P. Vicini, M. Incerty, I. A. Doytchinova, et al., Eur. J. Med. Chem., 48, No. 5, 624 (2006).CrossRefGoogle Scholar
  3. 3.
    B. Segura-Pacheco, C. Trejo-Becerril, E. Perez-Cardenas, et al., Clin. Cancer Res., 9, No. 5, 1596 (2003).Google Scholar
  4. 4.
    L. M. Kaminskas, S. M. Pyke, P. and C. Burcham, J. Pharm. Exper. Therap., 310, No. 3, 1003 (2004).CrossRefGoogle Scholar
  5. 5.
    V. A. Kogan, S. I. Levchenkov, L. D. Popov, and I. N. Shcherbakov, Russ. J. Gen. Chem., 79, No. 1, 2767 (2009).CrossRefGoogle Scholar
  6. 6.
    L. M. Kaminskas, S. M. Pyke, and P. C. Burcham, Org. Biomol. Chem., 18, No. 2, 2578 (2004).CrossRefGoogle Scholar
  7. 7.
    H. J. Knowles, Y. M. Tian, D. R. Mole, and A. L. Harris, Circ. Res., 95, No. 2, 162 (2004).CrossRefGoogle Scholar
  8. 8.
    P. A. Reece, Med. Res. Rev., 1, No. 1, 73 (1981).CrossRefGoogle Scholar
  9. 9.
    K. Nakashima, K. Shimada, and S. Akiyama, Chem. Pharm. Bull., 33, No. 4, 1515 (1985).CrossRefGoogle Scholar
  10. 10.
    T. Razvi, M. Ramalingam, and P. B. Sattur, Ind. J. Chem. Sect. B, 28, No. 8, 987 (1989).Google Scholar
  11. 11.
    G. Giorgi, F. Ponticelli, L. Chiasserini, and C. Pellerano, J. Chem. Soc., Perkin Trans. 2, No. 11, 2259 (2000).Google Scholar
  12. 12.
    T. Odashima, M. Yamada, N. Yonemori, and H. Ishi, Bull. Chem. Soc. Jpn., 60, No. 9, 3225 (1987).CrossRefGoogle Scholar
  13. 13.
    L. D. Popov, I. N. Shcherbakov, S. I. Levchenkov, et al., J. Coord. Chem., 61, No. 3, 392 (2008).CrossRefGoogle Scholar
  14. 14.
    L. D. Popov, I. N. Shcherbakov, S. I. Levchenkov, et al., Russ. J. Coord. Chem., 37, No. 7, 483 (2011).CrossRefGoogle Scholar
  15. 15.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, et al., Russ. J. Gen. Chem., 80, No. 12, 2501 (2010).CrossRefGoogle Scholar
  16. 16.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, et al., Russ. J. Gen. Chem., 82, No. 3, 465 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Callejon Mochon, M. Centero Gallego, and G. Perez, Talanta, 33, No. 7, 627 (1986).CrossRefGoogle Scholar
  18. 18.
    A. A. El-Sherif, M. M. Shoukry, and M. M. A. Abd-Elgawad, Spectrochim. Acta A, 98, 307 (2012).CrossRefGoogle Scholar
  19. 19.
    R. J. Butcher, J. P. Jasinski, H. S. Yathirajan, et al., Acta Crystallogr., E63, No. 9, o3674 (2007).Google Scholar
  20. 20.
    O. Büyükgüngör, M. Odabasoglu, A. M. Vijesh, and H. S. Yathirajan, Acta Crystallogr., E63, No. 10, o4084 (2007).Google Scholar
  21. 21.
    Bruker APEX2 Software Package, Bruker AXS, Madison (2005).Google Scholar
  22. 22.
    G. M. Sheldrik, SADABS, Program for Scanning and Correction of Area Detector Data, Univ. Göttingen, Germany (2004).Google Scholar
  23. 23.
    G. M. Sheldrick, Acta Crystallogr. A, 64, No. 1, 112 (2008).CrossRefGoogle Scholar
  24. 24.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT (2004).Google Scholar
  25. 25.
    R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A, 104, No. 23, 5631 (2000).CrossRefGoogle Scholar
  26. 26.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, No. 45, 11623 (1994).CrossRefGoogle Scholar
  27. 27.
    A. D. Becke, J. Chem. Phys., 98, No. 7, 5648 (1993).CrossRefGoogle Scholar
  28. 28.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, No. 2, 785 (1988).CrossRefGoogle Scholar
  29. 29.
    G. A. Zhurko and D. A. Zhurko, Chemcraft Version 1.6 (build 338): http://www.chemcraftprog.com.
  30. 30.
    F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem Soc., Perkin Trans. 2, No. 12, S1 (1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • L. D. Popov
    • 2
  • I. N. Shcherbakov
    • 2
  • G. G. Aleksandrov
    • 3
  • A. A. Zubenko
    • 4
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Chemistry DepartmentSouthern Federal UniversityRostov-on-DonRussia
  3. 3.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.North-Caucasian Zonal Research Veterinary InstituteNovocherkasskRussia

Personalised recommendations