Skip to main content
Log in

Adsorption behavior of Co and C2H2 on the graphite basal surface: A quantum chemistry study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of CO and C2H2 molecules on the perfect basal surface of graphite is investigated by adopting cluster models in conjunction with quantum chemical calculations. The noncovalent interaction potential energy curves for three different orientations of CO and C2H2 molecules with respect to the inert basal plane of graphite are calculated via semi-empirical and Möller-Plesset ab initio methods. Then, we have considered the effects of interaction energies on the C≡O and C≡C bond lengths by performing the partial geometry optimization procedure on the CO-graphite and C2H2-graphite systems in various intermolecular distances. The computational analysis of all physical noncovalent potential energy curves reveals that the relative configurations in which CO and C2H2 molecules approach the graphite sheet from out of the plane have stronger interaction energy and so is more favorable from the energetic viewpoint. This means that the graphite layer prefers to increase its thickness via the chemical vapor deposition of CO and C2H2 on the graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Li, H. Yan, J. Zhang, et al., Carbon, 130, 829–835 (2004).

    Article  Google Scholar 

  2. H. Westberg, M. Boman, A. S. Norekrans, et al., Thin Solid Films, 215, 126–133 (1992).

    Article  CAS  Google Scholar 

  3. J. Antes, Z. Hu, W. Zhang, et al., Carbon, 37, 2031–2039 (1999).

    Article  CAS  Google Scholar 

  4. W. Z. Li, S. S. Xie, L. X. Qian, et al., Science, 74, 1701–1703 (1996).

    Article  Google Scholar 

  5. A. Kuc, T. Heine, and G. Seifert, Phys. Rev., B81, 085430–085437 (2010).

    Google Scholar 

  6. R. Podeszwa, J. Chem. Phys., 132, 044704–044802 (2010).

    Article  Google Scholar 

  7. K. M. Hock, J. C. Barnard, R. E. Palmer, et al., Phys. Rev. Lett., 71, 641–644 (1993).

    Article  CAS  Google Scholar 

  8. C. Janiak, R. Hoffmann, P. Sjovall, et al., Langmuir, 9, 3427–3440 (1993).

    Article  CAS  Google Scholar 

  9. F. Jensen, Introduction to Computational Chemistry, Wiley VCH, Chichester, UK (1999).

    Google Scholar 

  10. N. Chen and R. T. Yang, Carbon, 36, 1061–1070 (1998).

    Article  CAS  Google Scholar 

  11. N. Chen and R. T. Yang, J. Phys. Chem. A, 102, 6348–6356 (1998).

    Article  CAS  Google Scholar 

  12. A. L. Bennett, B. McCarroll, and R. P. Messmer, Phys. Rev. B, 3, 1397–1406 (1971).

    Article  Google Scholar 

  13. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, et al., J. Am. Chem. Soc., 107, 3902–3909 (1985).

    Article  CAS  Google Scholar 

  14. J. J. P. Stewart, J. Comput. Chem., 10, 221–264 (1989).

    Article  CAS  Google Scholar 

  15. J. J. P. Stewart, J. Comput. Chem., 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  16. J. J. P. Stewart, J. Mol. Model., 13, 1173–1213 (2007).

    Article  CAS  Google Scholar 

  17. M. H. Gordon and J. A. Pople, Chem. Phys. Lett., 153, 503–506 (1988).

    Article  Google Scholar 

  18. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  19. T. Clark, J. Chandrasekhar, and P. v. R. Schleyer, J. Comp. Chem., 4, 294–301 (1983).

    Article  CAS  Google Scholar 

  20. R. Krishnam, J. S. Binkley, R. Seeger, et al., J. Chem. Phys., 72, 650–654 (1980).

    Article  Google Scholar 

  21. P. M. W. Gill, B. G. Johnson, J. A. Pople, et al., Chem. Phys. Lett., 197, 499–505 (1992).

    Article  CAS  Google Scholar 

  22. A. A. Voityuk and N. Rosch, J. Phys. Chem. A, 104, 4089–4094 (2000).

    Article  CAS  Google Scholar 

  23. W. Thiel and A. A. Voityuk, Theor. Chim. Acta, 81, 391–404 (1992).

    Article  CAS  Google Scholar 

  24. W. Thiel and A. A. Voityuk, J. Phys. Chem., 100, 616–626 (1996).

    Article  CAS  Google Scholar 

  25. S. F. Boys and F. Bernardi, Mol. Phys., 19, 553–566 (1970).

    Article  CAS  Google Scholar 

  26. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  27. MOPAC2009, James J.P. Stewart, Stewart Computational Chemistry, Version 8.331M, Colorado springs, USA (2009).

    Google Scholar 

  28. S. C. Xu, S. Irle, D. G. Musaev, et al., J. Phys. Chem. A, 109, 9563–9572 (2005).

    Article  CAS  Google Scholar 

  29. S. C. Xu, S. Irle, D. G. Musaev, et al., J. Phys. Chem. B, 110, 21135–21144 (2006).

    Article  CAS  Google Scholar 

  30. T. Matsubara, F. Maseras, N. Koga, et al., J. Phys. Chem., 100, 2573–2580 (1996).

    Article  CAS  Google Scholar 

  31. D. Porezag, T. Frauenheim, T. Koehler, et al., Phys. Rev. B, 51, 12947–12957 (1995).

    Article  CAS  Google Scholar 

  32. M. Elstner, P. Hobza, T. Frauenheim, et al., J. Chem. Phys., 114, 5149–5155 (2001).

    Article  CAS  Google Scholar 

  33. M. Nic, J. Jirat, and B. Kosata, Rice-Ramsperger-Kassel-Marcus (RRKM) Theory, Blackwell Scientific Publications, Oxford, UK (1997).

    Google Scholar 

  34. Y. H. Zhang, Y. B. Chen, K. G. Zhou, et al., Nanotechnology, 20, 185504–185512 (2009).

    Article  Google Scholar 

  35. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hosseinnejad.

Additional information

Original Russian Text Copyright © 2013 by T. Hosseinnejad, R. Abdullah Mirzaei, F. Nazari, M. H. Karimi-Jafari

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 54, No. 5, pp. 812–818, September–October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinnejad, T., Abdullah Mirzaei, R., Nazari, F. et al. Adsorption behavior of Co and C2H2 on the graphite basal surface: A quantum chemistry study. J Struct Chem 54, 850–856 (2013). https://doi.org/10.1134/S002247661305003X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661305003X

Keywords

Navigation