Journal of Structural Chemistry

, Volume 54, Issue 3, pp 499–504 | Cite as

Investigation of correlation between impact sensitivities and bond dissociation energies in benzenoid nitro compounds



The geometries of ten benzenoid energetic materials are fully optimized by employing B3LYP and B3P86 methods with the 6–31G** basis set. Bond dissociation energies (BDEs) for the removal of the NO2 group in benzenoid molecules are calculated at the same level. The calculation results show that the insertion of an electron withdrawing group increases the stability of the molecules, while the insertion of an electron donating group reduces the stability of the molecules. In addition, the relationship between the impact sensitivities and the weakest BDE values is examined. There exists a good linear correlation between the impact sensitivity and the ratio of the BDE value to the molecular total energy.


density functional theory bond dissociation energies (BDEs) benzenoid nitro molecules impact sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Andrews, Phys. Rev., 36, 544–554 (1990).CrossRefGoogle Scholar
  2. 2.
    E. V. Holtz, D. O. Ornellas, and M. F. Foltz, Propellants, Explosives, Pyrotechnics, 19, 206–212 (1994).CrossRefGoogle Scholar
  3. 3.
    M. F. Foltz, Propellants, Explosives, Pyrotechnics, 19, 63–96 (1994).CrossRefGoogle Scholar
  4. 4.
    A. K. Sikder, and N. Sikder, J. Hazard. Mater., 112, 1–15 (2004).CrossRefGoogle Scholar
  5. 5.
    A. K. Sikder, G. Maddalla, J. P. Agraval, and H. Singh, J. Hazard. Mater., 84, 1–26 (2001).CrossRefGoogle Scholar
  6. 6.
    L. E. Fried, M. R. Manaa, P. F. Pagoria, and R. L. Simpson, Ann. Rev. Mater. Res., 31, 291–323 (2001).CrossRefGoogle Scholar
  7. 7.
    M. J. Kamlet and H. G. Adolph, Propellants, Explosives, Pyrotechnics, 4, 30–34 (1979).CrossRefGoogle Scholar
  8. 8.
    M. J. Kamlet and H. G. Adolph, Proc. 7th Symp. Deton., Report No. NSWCMP-82-334, Naval SurfaceWarfare Center, Silver Springs, MD (1981), p. 84.Google Scholar
  9. 9.
    M. J. Kamlet, Proc. 6th Symp. Deton., Report No. ACR 221, Office of Naval Research (1976), p. 312.Google Scholar
  10. 10.
    F. J. Owens, J. Mol. Struct. (Theochem.), 370, 11–16 (1996).CrossRefGoogle Scholar
  11. 11.
    T. B. Brill and K. J. James, Chem. Rev., 93, 2667–2692 (1993).CrossRefGoogle Scholar
  12. 12.
    P. Politzer and J. S. Murray, J. Mol. Struct., 376, 419–424 (1996).CrossRefGoogle Scholar
  13. 13.
    B. M. Rice, S. Sahu, and F. J. Owens, J. Mol. Struct. (Theochem.), 583, 69–72 (2002).CrossRefGoogle Scholar
  14. 14.
    X. H. Li, Z. X. Tang, and X. Z. Zhang, J. Hazard. Mater., 183, 622–631 (2010).CrossRefGoogle Scholar
  15. 15.
    R. W. Hakala, Intern. J. Quant. Chem., 1, 187–196 (1967).CrossRefGoogle Scholar
  16. 16.
    R. Meyer, J. Kohler, and A. Homburg, Explosives, Wiley-VCH, Weinheim (2002).CrossRefGoogle Scholar
  17. 17.
    X. H. Li, R. Z. Zhang, X. Z. Zhang, X. D. Yang, and X. L. Cheng, Chinese J. Struct. Chem., 26, 1481–1485 (2007).Google Scholar
  18. 18.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.02, Gaussian Inc., Pittsburgh, PA (2003).Google Scholar
  19. 19.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefGoogle Scholar
  20. 20.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).CrossRefGoogle Scholar
  21. 21.
    J. P. Perdew, Phys. Rev. B, 33, 8822–8824 (1986).CrossRefGoogle Scholar
  22. 22.
    P. C. Chen, Y. C. Chieh, and S. C. Tzeng, J. Mol. Struct. (Theochem.), 634, 215–224 (2003).CrossRefGoogle Scholar
  23. 23.
    X. H. Li, Z. X. Tang, X. Z. Zhang, and X. D. Yang, J. Hazard. Mater., 165, 372–378 (2009).CrossRefGoogle Scholar
  24. 24.
    B. M. Rice, S. Sahu, and F. J. Owens, J. Mol. Struct.(Theochem.), 583, 69–72 (2002).CrossRefGoogle Scholar
  25. 25.
    S. W. Benson, Thermochemical Kinetics, 2d ed., Wiley-Interscience, New York (1976).Google Scholar
  26. 26.
    M. J. Kamlet, Proceeding 6 Intern. Symp. Detonation, CA, San Diego (1976).Google Scholar
  27. 27.
    G. S. Chung, M. W. Schimidt, and M. S. Gordon, J. Phys. Chem. A, 104, 5647–5650 (2000).CrossRefGoogle Scholar
  28. 28.
    X. H. Li, Z. X. Tang, Abraham F. Jalbout, X. Z. Zhang, and X. L. Cheng, J. Mol. Struct. (Theochem.), 854, 76 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.College of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Luoyang Key Laboratory of Photoelectric Functional MaterialsHenan University of Science and TechnologyLuoyangChina
  3. 3.Mathematics and Physics DepartmentLuoyang Institute of Science and TechnologyLuoyangChina
  4. 4.College of Physics and Information EngineeringHenan Normal UniversityXinxiangChina

Personalised recommendations