Skip to main content
Log in

In situ high-temperature X-ray diffraction measurements: Application to the study of heterogeneous catalysts

  • The Centenary of X-Ray Diffraction
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

When characterizing the phase composition and structure of catalysts, researchers are faced with the problem of reversible effects of temperature and gas medium during their preparation, activation, or operation. Therefore, particular attention is paid to the methods of their research in appropriate conditions, i.e., in situ high-temperature X-ray diffraction. The theoretical framework and experimental features of high-temperature X-ray diffraction techniques are examined. Examples are given of their effective application to the study of the structural features of oxide catalysts under close-to-real conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Bokii and M. A. Porai-Koshits, Single Crystal X-Ray Diffraction [in Russian], MGU, Moscow (1964).

    Google Scholar 

  2. Yu. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, et al., Crystallography, Radiography, and Electron Microscopy [in Russian], Metallurgizdat, Moscow (1982).

    Google Scholar 

  3. V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction and Structural Characterisation of Materials, Springer, USA (2005).

    Google Scholar 

  4. S. A. Gromilov, Introduction to Polycrystalline X-Ray Diffraction [in Russian], NGU, Novosibirsk (2009).

    Google Scholar 

  5. R. E. Dinebier and S. J. L. Billinge (eds.), in: Powder Diffraction. Theorie and Practice, RSC-Publiching (2009).

  6. S. V. Tsybulya and S. V. Cherepanova, Introduction to the Structural Analysis of Nanocrystals [in Russian], NGU, Novosibirsk (2009).

    Google Scholar 

  7. É. M. Moroz, Usp. Khim., 80, No. 4, 315 (2011).

    Google Scholar 

  8. L. M. Plyasova (ed.), in: X-Ray Diffraction of Catalysts under Controlled Conditions of Temperature and Medium (A Collective Monograph) [in Russian], BIK SO RAN, Novosibirsk (2011).

    Google Scholar 

  9. V. A. Finkel’, High-Temperature X-Ray Diffraction of Metals [in Russian], Metallurgiya, Moscow (1968).

    Google Scholar 

  10. S. K. Filatov, High-Temperature Crystal Chemistry: Theory, Methods, and Research Results [in Russian], Nedra, Leningrad (1990).

    Google Scholar 

  11. R. S. Bubnova, M. G. Krzhizhanovskaya, and S. K. Filatov, A Practical Guide to Thermal X-Ray Diffraction of Polycrystals [in Russian], Part 1, SPbGU, St. Petersburg (2011).

    Google Scholar 

  12. C. Giacovazzo, Fundamentals of Crystallography. Second Edition, Oxford University Press, Oxford, UK (2002).

    Google Scholar 

  13. S. T. Misture, J. Electroceram., 19, 167 (2006).

    Google Scholar 

  14. R. I. Walton and D. O’Hare, Chem. Comm., 2283 (2000).

  15. R. I. Walton and D. O’Hare, J. Chem. Soc., Dalton Trans., 3133 (1998).

  16. O. V. Isaev and M. Ya. Kushnarev, Dokl. Akad. Nauk SSSR, 24, 858 (1959).

    Google Scholar 

  17. J. Paskin and E. D. Pierron, J. Catal., 6, 332 (1966).

    Google Scholar 

  18. http://www.anton-paar.com/XRD; http://www.edmund-buehler.de

  19. J. M. Thomas and G. N. Greaves, Cat. Lett., 337 (1993).

  20. I. J. Shannon, T. Maschmeyer, G. Sankar, et al., Cat. Lett., 44, 23 (1997).

    CAS  Google Scholar 

  21. M. A. Newton, M. D. Michiel, A. Kubacka, et al., J. Am. Chem. Soc., 132, 4540 (2010).

    CAS  Google Scholar 

  22. G. N. Kulipanov and A. N. Skrinskii, UFN, 122, No. 3, 369 (1977)

    CAS  Google Scholar 

  23. I. M. Ternov, UFN, 165, No. 4, 429 (1995).

    CAS  Google Scholar 

  24. A. N. Shmakov, S. V. Mytnichenko, L. P. Solov’eva, and B. P. Tolochko, Zh. Strukt. Khim., 35, 85 (1994).

    CAS  Google Scholar 

  25. A. Borodzinski and A. Janko, React. Kinet. Catal. Lett., 7, 163 (1977).

    CAS  Google Scholar 

  26. J. Zelinski and A. Borodzinski, Appl. Catal., 13, 305 (1985).

    Google Scholar 

  27. N. A. Zhigulina, Nadezhdin, and P. N. Tsybulev, Zav. Lab., 11, 62 (1983).

    Google Scholar 

  28. L. M. Plyasova, in: Methods for Catalyst Research. 1. X-Ray Diffraction Studies of Catalysts [in Russian], IK SO AN SSSR, Novosibirsk (1977), pp. 85.

    Google Scholar 

  29. T. A. Kriger and L. M. Plyasova, Catalysis and Catalysts (Basic Research) [in Russian], IK SO RAN, Novosibirsk (1998), pp. 210–212.

    Google Scholar 

  30. D. M. Kheiker and L. S. Zevin, X-Ray Diffractometry [in Russian], Fizmatlit, Moscow (1963).

    Google Scholar 

  31. V. I. Lisoivan and S. A. Gromilov, Precision Aspects and Polycrystalline Diffractometry [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  32. A. Clearfield, J. H. Reibenspies, and N. Bhuvanesh, Principles and Application of Powder Diffraction, Willey (2008).

  33. M. Wohlschlogel, U. Welzel, G. Maierb, et al., Appl. Crystallogr., 39, 194 (2006).

    Google Scholar 

  34. M. Dapiaggi, G. Artioli, and L. Petras, The Rigaku Journal., 19, 35 (2002).

    CAS  Google Scholar 

  35. S. T. Misture, C. R. Hubbard, and X. L. Wang, Adv. X-ray Anal., 45, 25 (2002).

    CAS  Google Scholar 

  36. M. D. Dolan, S. Zdzieszynski, and S. T. Misture, Andv. X-ray Anal., 46, 50 (2003).

    CAS  Google Scholar 

  37. S. I. Novikova, Thermal Expansion of Solid Bodies [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  38. Powder Diffraction File, PDF-2, Release 2009, International Center for Diffraction Data, USA (2009).

  39. V. E. Rudnichenko, in: Instruments and Methods of X-Ray Analysis [in Russian], Mashinostroenie, Leningrad (1969), 4, p. 32.

    Google Scholar 

  40. R. W. Chery, J. Appl. Crystallogr., 15, 15 (1982).

    Google Scholar 

  41. S. Popovic, J. Appl. Crystallogr., 6, 122 (1973).

    CAS  Google Scholar 

  42. S. K. Filatov, in: Crystal Chemistry and Structure of Minerals [in Russian], LGU, Leningrad (1978), 108 pp.

    Google Scholar 

  43. T. A. Kriger and L. M. Plyasova, All-Union Conf. on New Opportunities of Diffraction, X-Ray Spectral, and Electron Microscopic Research Methods, Moscow, June 16–17 (1987), pp. 15.

  44. B. E. Warren, X-ray Diffraction, Addison-Wesley Publ. Company, New York, London (1969).

    Google Scholar 

  45. L. M. Plyasova, Development of in Situ X-Ray Diffraction Methods for Catalyst Research: Patterns in the Formation of Mo-, Fe-, and Cu-Containing Oxide Systems, Dis. ... Dr. Sci. Chem., Institute of Catalysis, Siberian Division, Russian Academy of Sciences, Novosibirsk (1993).

    Google Scholar 

  46. V. I. Iveronova and G. P. Revkevich, The Theory of X-Ray Scattering [in Russian], MGU, Moscow (1978).

    Google Scholar 

  47. A. Guinier, Theorie et Technique de la Radiocrystallographie, 2d ed., Dunod, Paris (1956).

    Google Scholar 

  48. Yu. A. Bagaryatskii, in: X-Ray Diffraction in Physical Metallurgy [in Russian], Gosizdat. Chern. Tsvet. Metallurg., Moscow (1969).

    Google Scholar 

  49. A. A. Katsnel’son (ed.), in: X-Ray Diffraction [in Russian], MGU, Moscow (1986).

  50. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-Ray Diffraction and Electron Diffraction Analysis of Metals [in Russian], Gosizdat. Chern. Tsvet. Metallurg., Moscow (1969).

    Google Scholar 

  51. B. E. Warren, Acta Crystallogr., 6, 83 (1953).

    Google Scholar 

  52. E. F. Skelton and L. Katz, Acta Crystallogr. A, 25, 219 (1969).

    Google Scholar 

  53. V. I. Voloshina, V. S. Arutyunov, V. G. Tsirel’son, et al., Kristallografiya, 29, No. 5, 864 (1987).

    Google Scholar 

  54. A. A. Katsnel’son, T. V. Kuvardina, and G. P. Revkevich, Elimination of TDS Effects in Diffuse Background Measurements, in: Instruments and Methods of X-Ray Analysis [in Russian], Mashinostroenie, Leningrad (1973), 12, p. 185.

    Google Scholar 

  55. B. Borie, Acta Crystallogr., 14, 566 (1961).

    CAS  Google Scholar 

  56. V. I. Iveronova, A. A. Katsnel’son, I. I. Popova, and S. V. Sveshnikov, Kristallografiya, 12, 888 (1967)

    CAS  Google Scholar 

  57. A. A. Katsnel’son and I. I. Popova, Izv. Vyssh. Uchebn. Zaved, Fiz., 17, No. 5, 715 (1974).

    Google Scholar 

  58. V. I. Iveronova and A. A. Katsnel’son, Short-Range Order in Solid Solutions [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  59. D. R. Chipman and A. Paskin, J. Appl. Phys., 30, No. 12, 1992 (1959).

    CAS  Google Scholar 

  60. V. S. Urusov, Theoretical Crystal Chemistry [in Russian], MGU, Moscow (1987).

    Google Scholar 

  61. M. I. Loktev and A. Slinkin, Itogi Nauk Tekhn. Ser. Kinet. Katal., 7, 3 (1980).

    CAS  Google Scholar 

  62. G. W. Smith and G. A. Ibers, Acta Crystallogr., 19, 269 (1965).

    CAS  Google Scholar 

  63. S. C. Abrahams and J. M. Reddy, J. Chem. Phys., 43, No. 7, 2533 (1965).

    CAS  Google Scholar 

  64. T. V. Andrushkevich, G. Ya. Popova, G. K. Boreskov, et al., Kinet. Katal., 19, No. 1, 184 (1978).

    CAS  Google Scholar 

  65. H. P. Rooksby, Acta Crystallogr., No. 1, 226 (1948).

  66. G. B. Bokii, Kristallokhimiya [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  67. T. A. Kriger, L. M. Plyasova, T. M. Yur’eva, et al., Izv. Sib. Otd. Akad. Nauk SSSR, No. 19, 76 (1988).

  68. I. I. Simentsova, T. P. Minyukova, A. A. Khasin, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2002 (2010).

  69. O. Grottaz, F. Kubel, and H. Schmid, J. Mater. Chem., 7, No. 1, 143 (1997).

    Google Scholar 

  70. L. M. Plyasova, I. Yu. Molina, T. A. Kriger, et al., Kinet. Katal., 42, No. 1, 139 (2001).

    Google Scholar 

  71. L. M. Plyasova, V. F. Anufrienko, A. I. Beskrovnyi, et al., J. Struct. Chem., 43, No. 2, 252–256 (2002).

    CAS  Google Scholar 

  72. L. M. Plyasova, R. F. Klevtsova, and S. V. Borisov, Kristallogrfiya, 12, 939 (1976).

    Google Scholar 

  73. L. M. Plyasova, Zh. Strukt. Khim., 17, No. 4, 738 (1976).

    CAS  Google Scholar 

  74. I. Sh. Itenberg, M. M. Andrushkevich, R. A. Buyanov, et al., Kinet. Katal., 14, No. 5, 1345 (1973).

    Google Scholar 

  75. G. W. Smith and G. A. Ibers, Acta Crystallogr., 19, 269 (1965).

    CAS  Google Scholar 

  76. S. C. Abrahams and J. M. Reddy, J. Chem. Phys., 43, No. 7, 2533 (1965).

    CAS  Google Scholar 

  77. L. M. Plyasova, M. M. Andrushkevich, R. A. Buyanov, et al., Kinet. Katal., 14, No. 4, 1010 (1973).

    CAS  Google Scholar 

  78. L. M. Plyasova and M. M. Andrushkevich, Kinet. Katal., 15, No. 5, 1360 (1974).

    CAS  Google Scholar 

  79. M. Boudart, Advan. Catal., 20, 153 (1969).

    CAS  Google Scholar 

  80. P. A. Sermon and G. C. Bond, Catalysis Rew., 8, No. 2, 211 (1973).

    CAS  Google Scholar 

  81. A. V. Khasin, I. I. Simentsova, and T. M. Yur’eva, Kinet. Katal., 41, No. 2, 310 (2000).

    Google Scholar 

  82. O. Glemser and C. Naumann, Zeitschr. Anorg. Allg. Chemie, 2659, 288 (1951).

    Google Scholar 

  83. O. V. Krylov, Heterogeneous Catalysis (A Study Guide) [in Russian], Part 3, NGU, Novosibirsk (2002).

    Google Scholar 

  84. L. M. Plyasova, I. Yu. Molina, and G. N. Kustova, Proceedings of the All-Russian Scientific Readings Dedicated to 75th Anniversary of M. V. Mokhosoev, Ulan-Ude (2007), p. 245.

  85. O. V. Makarova, T. M. Yur’eva, and L. M. Plyasova, et al., Kinet. Katal., 34, No. 4, 681 (1993).

    CAS  Google Scholar 

  86. L. M. Plyasova, L. P. Solovieva, T. A. Krieger et al., J. Molec. Catal. A, 105, 61 (1996).

    CAS  Google Scholar 

  87. T. M. Yurieva, L. M. Plyasova, O. V. Makarova et al., J. Molec. Catal. A, 113, 455 (1996).

    CAS  Google Scholar 

  88. T. P. Minyukova, I. I. Simentsova, A. V. Khasin, et al., Appl. Catal. A, 237, 171 (2002).

    CAS  Google Scholar 

  89. L. M. Plyasova, L. P. Solov’eva, T. M. Yur’eva, et al., Kinet. Katal., 37, No. 4, 623 (1996).

    Google Scholar 

  90. L. M. Plyasova, I. Yu. Molina, T. A. Krieger, et al., J. Molec. Catal. A, 158, 331 (2000).

    CAS  Google Scholar 

  91. L. M. Plyasova, I. Yu. Molina, T. A. Kriger, et al., Kinet. Katal., 42, No. 1, 139 (2001).

    Google Scholar 

  92. Yu. Z. Nozik, R. P. Ozerov, and K. Hennig, Structural Neutron Diffraction [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  93. L. Yalowiecki, M. Daage, and J. P. Bounelle, Appl. Catal., 16, 1 (1985).

    Google Scholar 

  94. É. N. Yurchenko, A. I. Boronin, A. V. Ziborov, et al., Kinet. Katal., 33, No. 2, 401 (1992).

    CAS  Google Scholar 

  95. A. A. Khasin, T. M. Yur’eva, L. M. Plyasova, et al., Ros. Khim. Zh., 11, No. 1, 32 (2008).

    Google Scholar 

  96. L. M. Plyasova, T. M. Yur’eva, T. A. Kriger, et al., Kinet. Katal., 36, No. 3, 464 (1995).

    Google Scholar 

  97. L. M. Plyasova, T. M. Yur’eva, T. A. Kriger, et al., Kinet. Katal., 36, No. 5, 769 (1995).

    Google Scholar 

  98. T. M. Yurieva, L. M. Plyasova, V. I. Zaikovskii, et al., Phys. Chem. Chem. Phys., 6, 4522 (2004).

    CAS  Google Scholar 

  99. V. A. Trounov, V. T. Lebedev, A. E. Sokolov et al., Crystallogr. Rep., 52, No. 3, 473 (2007).

    Google Scholar 

  100. S. V. Cherepanova, O. A. Bulavchenko, and S. V. Tsybulya, J. Struct. Chem., 49, No. 3, 512–516 (2008).

    CAS  Google Scholar 

  101. O. A. Bulavchenko, S. V. Cherepanova, V. V. Malakhov, et al., Kinet. Katal., 50, No. 2, 205 (2009).

    Google Scholar 

  102. S. V. Cherepanova, O. A. Bulavchenko, and I. Simentsova, Z. Kristallogr. Proc., 331 (2011).

  103. L. M. Plyasova, M. M. Andrushkevich, R. G. Kotel’nikov, et al., Kinet. Katal., 17, No. 3, 750 (1976).

    CAS  Google Scholar 

  104. S. J. Scheider and E. M. Levin, J. Am. Ceram. Soc., 56, 219 (1973).

    Google Scholar 

  105. T. F. W. Barth, J. Chem. Phys., 3, 323.

  106. R. W. G. Wyckoff, Crystal Structures, Interscience Publ, New York (1963), p. 1.

    Google Scholar 

  107. J. Choinocki, R. Kozlowski, and J. Haber, J. Solid State Chem., 11, 150 (1974).

    Google Scholar 

  108. C. Z. Pristorius, Phys. Chem. B, 35, 109 (1962).

    Google Scholar 

  109. L. M. Plyasova, M. M. Andrushkevich, R. G. Kotel’nikov, et al., Kinet. Katal., 17, No. 5, 1295 (1976).

    CAS  Google Scholar 

  110. M. M. Andrushkevich, L. M. Plyasova, V. V. Molchanov, et al., Kinet. Katal., 19, No. 2, 422 (1978).

    CAS  Google Scholar 

  111. M. M. Andrushkevich, L. M. Plyasova, V. V. Molchanov, et al., Kinet. Katal., 29, 1271 (1988).

    Google Scholar 

  112. V. V. Molchanov, L. M. Plyasova, and M. M. Andrushkevich, Kinet. Katal., 30, 1508 (1989).

    CAS  Google Scholar 

  113. V. V. Molchanov, M. M. Andrushkevich, and L. M. Plyasova, Kinet. Katal., 32, 1008 (1991).

    CAS  Google Scholar 

  114. G. G. Volkova, T. M. Yurieva, et al., J. Molec. Catal. A, 158, 389 (2000).

    CAS  Google Scholar 

  115. P. Courty, D. Durand, A. Sagier, et al., J. Molec. Catal., 17, Nos. 1/2, 241 (1982).

    CAS  Google Scholar 

  116. X. Xiaonding, E. B. M. Doesburg, and J. J. F. Scholten, Catal. Today, No. 2, 125 (1987).

  117. G. G. Volkova, L. M. Plyasova, T. A. Kriger, et al., Kinet. Katal., 39, No. 5, 1 (1998).

    Google Scholar 

  118. G. G. Volkova, T. A. Krieger, L. M. Plyasova, et al., Stud. Sur. Sci. Catal., 7, 67 (1997).

    Google Scholar 

  119. P. G. Tsyrul’nikov, V. A. Sal’nikov, V. A. Drozdov, et al., Kinet. Katal., 32, 439 (1991).

    Google Scholar 

  120. S. V. Tsybulya, T. A. Kriger, G. N. Kryukova, et al., Kinet. Katal., 44, No. 2, 311 (2003).

    Google Scholar 

  121. O. A. Bulavchenko, S. V. Tsybulya, S. V. Cherepanova, et al., J. Struct. Chem., 50, No. 3, 474–478 (2009).

    CAS  Google Scholar 

  122. O. A. Bulavchenko, S. V. Tsybulya, S. V. Cherepanova, et al., J. Struct. Chem., 51, No. 3, 500–506 (2010).

    CAS  Google Scholar 

  123. O. A. Bulavchenko, S. V. Tsybulya, E. Gerasimov, et al., Z. Kristallogr. Proc., 1, 325 (2011).

    Google Scholar 

  124. L. M. Plyasova, T. A. Kriger, A. A. Khasin, and V. N. Parmon, Dokl. Akad. Nauk, Fiz. Khim., 382, 505 (2002).

    Google Scholar 

  125. L. M. Plyasova, T. A. Krieger, A. A. Khasin, and V. N. Parmon, Abstr. V Europ. Cat. Conference, Limerik, Ireland, 1, No. 6, 33 (2001).

    Google Scholar 

  126. V. N. Parmon, Kinet. Katal., 37, 476 (1996).

    Google Scholar 

  127. T. Yu. Kardash, L. M. Plyasova, V. M. Bondareva, et al., Kinet. Katal., 50, No. 1, 54 (2009).

    Google Scholar 

  128. T. Yu. Kardash, The Structure and Physicochemical Properties of Multicomponent Catalysts Based on Polygon-Network Molybdenum Oxides, Dis. ... Cand. Sci. (Chem.), Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk (2010).

    Google Scholar 

  129. T. Yu. Kardash, L. M. Plyasova, V. M. Bondareva, et al., Appl. Catal. A, 375, 26 (2010).

    CAS  Google Scholar 

  130. A. N. Nadeev, S. V. Tsybulya, G. N. Kryukova, et al., Z. Kristallogr. Suppl., 26, 381 (2007).

    Google Scholar 

  131. A. N. Nadeev, S. V. Tsybulya, A. N. Shmakov, et al., J. Struct. Chem., 48, No. 6, 1105–1109 (2007).

    CAS  Google Scholar 

  132. L. A. Isupova, A. N. Nadeev., I. S. Yakovleva, et al., Kinet. Katal., 49, No. 1, 142 (2008).

    Google Scholar 

  133. A. N. Nadeev, S. V. Tsybulya, I. S. Yakovleva, et al., Acta Crystallogr. Suppl., A 64, 520 (2008).

    Google Scholar 

  134. A. N. Nadeev, S. V. Tsybulya, V. D. Belyaev, et al., J. Struct. Chem., 49, No. 6, 1077–1083 (2008).

    CAS  Google Scholar 

  135. L. A. Isupova, E. Yu. Gerasimov, V. I. Zaikovskii, et al., Kinet. Katal., 52, No. 1, 1 (2011).

    Google Scholar 

  136. O. Yu. Podyacheva, Z. R. Ismagilov, A. N. Shmakov, et al., Catalysis Today, 147, 270 (2009).

    CAS  Google Scholar 

  137. M. G. Ivanov, A. N. Shmakov, O. Yu. Pod’yacheva, et al., J. Struct. Chem., 51, 552 (2010

    Google Scholar 

  138. M. G. Ivanov, A. N. Shmakov, S. V. Tsybulya, et al., Solid State Phenomena, 163, 38 (2010).

    CAS  Google Scholar 

  139. M. G. Ivanov, A. N. Shmakov, V. A. Drebushchak, et al., J. Thermal Analysis and Calorimetry, 100, 79 (2010).

    CAS  Google Scholar 

  140. O. Yu. Podyacheva, Z. R. Ismagilov, A. E. Shalagina, et al., Carbon, 48, 2792 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Plyasova.

Additional information

Original Russian Text Copyright © 2012 by L. M. Plyasova, T. Yu. Kardash

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 53, Supplement, pp. S90–S112, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plyasova, L.M., Kardash, T.Y. In situ high-temperature X-ray diffraction measurements: Application to the study of heterogeneous catalysts. J Struct Chem 53 (Suppl 1), 86–108 (2012). https://doi.org/10.1134/S0022476612070104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612070104

Keywords

Navigation