Skip to main content

Self-assembly and gel formation processes in an aqueous solution of L-cysteine and silver nitrate

Abstract

The experimental and theoretical study of self-assembly and gel formation processes in an aqueous solution of L-cysteine and silver nitrate (CSS) is performed. A method to obtain CSS-based hydrogel is described. Its characteristic feature is the formation of a spatial gel network at a low concentration of the dispersed phase (∼0.01%) and the thixotropic behavior. The experimental examination of this system provides the formulation of a phenomenological model of the gel formation. Based on it, an atomistic computer model is made to verify our assumptions. It is shown that due to the formation of donor-acceptor sulfur-silver bonds there form clusters from silver mercaptide (SM) zwitterions, from which in turn filamentous aggregates form. An analysis of the molecular configurations formed shows that the filamentous aggregates are stabilized by the interaction of 3 −NH +3 and −C(O)O groups belonging to SM zwitterions in the composition of the neighboring clusters. The obtained conclusions underlie the mesoscopic model based on which we managed to illustrate the processes of generation and growth of filamentous aggregates in large spatial scales.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Terech and R. G. Weiss, Chem. Rev., 97, No. 8, 3133 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    G. C. Maity, J. Phys. Sci., 11, No. 1, 156 (2007).

    Google Scholar 

  3. 3.

    L. Estroff and A. D. Hamilton, Chem. Rev., 104, No. 3, 1201 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    M. Loos, B. L. Feringa, and J. H. Esch, Eur. J. Org. Chem., 2005, No. 17, 3615 (2005).

    Article  Google Scholar 

  5. 5.

    O. Wichterle and D. Lím, Nature, 185, No. 4707, 117 (1960).

    Article  Google Scholar 

  6. 6.

    C.-C. Lin and A. T. Metters, Adv. Drug Delivery Rev., 58, Nos. 12/13, 1379 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    P. J. Flori, Faraday Discuss. Chem. Soc., 57, 7 (1974).

    Article  Google Scholar 

  8. 8.

    A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. Lett., 42, No. 8, 518 (1979).

    CAS  Article  Google Scholar 

  9. 9.

    D. Stauffer, Pure Appl. Chem., 53, No. 8, 1479 (1981).

    CAS  Article  Google Scholar 

  10. 10.

    D. Stauffer, A. Coniglio, and M. Adam, Adv. Polym. Sci., 44, 103 (1982).

    CAS  Article  Google Scholar 

  11. 11.

    L. L. Vedenov and E. B. Levchenko, Usp. Fiz. Nauk, 141, No. 1, 3 (1983).

    CAS  Article  Google Scholar 

  12. 12.

    W. M. Gelbart and A. Ben-Shaul, J. Phys. Chem., 100, No. 31, 13196 (1996).

    Google Scholar 

  13. 13.

    A. P. Philipse and A. M. Wierenga, Langmuir, 14, No. 1, 49 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    J. H. Van Esch and B. L. Feringa, Angew. Chem. Int. Ed., 39, No. 13, 2263 (2000).

    Article  Google Scholar 

  15. 15.

    J. V. Esch, F. Schoonbeek, M. Loos, E. M. Veen, R. M. Kellogg, and B. L. Feringa, in: Supramolecular Science: Where It Is and Where It Is Going, R. Ungaro and E. Dalcanale (eds.), Kluwer Academic Publishers, Netherlands (1999), pp. 233–259.

    Chapter  Google Scholar 

  16. 16.

    J.-H. Fuhrhop and W. Helfrich, Chem. Rev., 93, No. 6, 1565 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    A. N. Glebov and I. G. Grigor’eva, Koordinats. Khim., 28, No. 5, 395 (2002).

    Google Scholar 

  18. 18.

    A. Ciferri (ed.), Supramolecular Polymers, Dekker, New York (2000).

    Google Scholar 

  19. 19.

    P. M. Pakhomov, M. M. Ovchinnikov, S. D. Khizhnyak, M. V. Lavrienko, W. Nierling, and M. D. Lechner, Kolloid. Zh., 66, No. 1, 73 (2004).

    Google Scholar 

  20. 20.

    M. M. Ovchinnikov, P. M. Pakhomov, and S. D. Khizhnyak, Patent of RF No. 2317305 on 20.02.2008.

  21. 21.

    G. R. Lenz and A. E. Martell, Biochem., 3, No. 6, 745 (1964).

    CAS  Article  Google Scholar 

  22. 22.

    W. Weng, Z. Li, A. M. Jamieson, and S. J. Rowan, Macromolec., 42, No. 1, 236 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, Chem. Rev., 101, No. 12, 4071 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    M. J. Serpe and S. L. Craig, Langmuir, 23, No. 4, 1626 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    P. M. Pakhomov, S. S. Abramchuk, S. D. Khizhnyak, M. M. Ovchinnikov, and V. M. Spiridonova, Nanotechnologies in Russia, 5, Nos. 3/4, 209 (2010).

    Article  Google Scholar 

  26. 26.

    S. Provencher, Comp. Phys. Comm., 27, No. 3, 213 (1992).

    Article  Google Scholar 

  27. 27.

    W. Burchard, Macromol. Symp., 101, No. 1, 103 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    H. B. Vickery and C. S. Leavenworth, J. Biol. Chem., 86, 129 (1930).

    CAS  Google Scholar 

  29. 29.

    Y. Gao, P. Jiang, L. Song, L. Liu, X. Yan, Z. Zhou, D. Liu, J. Wang, H. Yuan, Z. Zhang, X. Zhao, X. Dou, W. Zhou, G. Wang, and S. Xie, J. Phys. D: Appl. Phys., 38, No. 7, 1061 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    M. V. Varghese, R. S. Dhumal, S. S. Patil, A. R. Paradkar, and P. K. Khanna, Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 39, No. 9, 554 (2009).

    CAS  Google Scholar 

  31. 31.

    L.-O. Andersson, J. Polym. Sci. Part A-1: Polymer Chemistry, 10, No. 7, 1963 (1972).

    Article  Google Scholar 

  32. 32.

    R. A. Bell and J. R. Kramer, Environmental Toxicology and Chemistry, 18, No. 1, 9 (1999).

    CAS  Google Scholar 

  33. 33.

    G. Schramm, A Practical Approach to Rheology and Rheometry, Haake GmbH, Karlsruhe, Germany (1994).

    Google Scholar 

  34. 34.

    W. Bae and R. K. Mehra, J. Inorgan. Biochem., 70, No. 2, 125 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    M. C. Brelle, J. Z. Zhang, L. Nguyen, and R. K. Mehra, J. Phys. Chem. A, 103, No. 49, 10194 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    S. Mandal, A. Gole, N. Lala, R. Gonnade, V. Ganvir, and M. Sastry, Langmuir, 17, No. 20, 6262 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Ch. Barglik-Chory, Ch. Remenyi, H. Strohm, and G. Muller, J. Phys. Chem. B, 108, No. 23, 7637 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    S. Panigrahi, S. Kundu, S. Basu, S. Praharaj, S. Jana, S. Pande, S. K. Ghosh, A. Pal, and T. Pal, Nanotechnology, 7, No. 21, 5461 (2006).

    Article  Google Scholar 

  39. 39.

    B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, J. Phys. Chem. B, 110, No. 18, 8978 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    J. Xiang, H. Cao, Q. Wu, S. Zhang, X. Zhang, and A. A. R. Watt, J. Phys. Chem. C, 112, No. 10, 3580 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    N. W. H. Adams and J. R. Kramer, Aqua Geochem., 5, No. 1, 1 (1999).

    CAS  Article  Google Scholar 

  42. 42.

    S. S. Voyutckii, Course of Colloidal Chemistry [in Russian], Khimiya, Moscow (1976).

    Google Scholar 

  43. 43.

    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, Jr. K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 117, No. 19, 5179 (1995).

    CAS  Article  Google Scholar 

  44. 44.

    D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, M. Crowley, and R. W. Zhang, AMBER 10, Univ. California, San Francisco, USA (2008).

    Google Scholar 

  45. 45.

    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys., 79, No. 2, 926 (1983).

    CAS  Article  Google Scholar 

  46. 46.

    H. Sun, Macromolecules, 28, No. 3, 701 (1995).

    CAS  Article  Google Scholar 

  47. 47.

    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, No. 6, 1285 (1975).

    CAS  Article  Google Scholar 

  48. 48.

    Hyperchem 8.0.8-USA, Hypercube, Inc., Gainesville, Florida (2010).

  49. 49.

    V. M. Spiridonova, V. S. Savel’eva, S. D. Khizhnyak, M. M. Ovchinnikov, and P. M. Pakhomov, Fiz. Khim. Polimer., Vyp. 15, Tver’ (2009), pp. 88–93.

  50. 50.

    W. Smith and T. R. Forester, J. Mol. Graph., 14, No. 3, 136 (1996).

    CAS  Article  Google Scholar 

  51. 51.

    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, UK (1989).

    Google Scholar 

  52. 52.

    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, and E. Teller, J. Chem. Phys., 21, No. 16, 1087 (1953).

    CAS  Article  Google Scholar 

  53. 53.

    A. Yu. Men’shikova, Ross. Nanotekhnologii, 5, Nos. 1/2, 52 (2010).

    Google Scholar 

  54. 54.

    P. K. Sukul and S. Malik, Softmatter., 7, No. 9, 4234 (2011).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Komarov.

Additional information

Original Russian Text Copyright © 2012 by P. V. Komarov, I. V. Mikhailov, V. G. Alekseev, S. D. Khizhnyak, P. M. Pakhomov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 53, No. 5, pp. 1006–1023, September–October, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komarov, P.V., Mikhailov, I.V., Alekseev, V.G. et al. Self-assembly and gel formation processes in an aqueous solution of L-cysteine and silver nitrate. J Struct Chem 53, 988–1005 (2012). https://doi.org/10.1134/S002247661205023X

Download citation

Keywords

  • physical gel
  • cysteine-silver solution
  • self-assembly
  • gel formation
  • computer simulation