Skip to main content
Log in

Theoretical study on the molecular electronic properties of salicylic acid derivatives as anti- inflammatory drugs

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A systematic computational study was carried out to determine the structural stability of salicylic acid derivatives as well as the acidic properties of the protonation-deprotonation site and excitation parameters of the considered drugs at different temperatures using quantum chemical calculations. For further structural information, the dipole moment and differences in the energy of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) as Δ(HOMO-LUMO) were compared. A high stability of the salicylic acid derivatives was referred to the large HOMO-LUMO band gap. The result of the current study may give useful information about the drug biochemical functionality based on the physical and chemical nature at different temperatures, and in this way the study on the structural features of analogous molecules of salicylic acid derivatives with higher drug functionality would be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Gilman, J. G. Hardman, and L. E. Limbird, The Pharmacological Basis of Therapeutics, 10th ed, McGraw Hill, New York (2001).

    Google Scholar 

  2. Y. Sasada, T. Takano, and M. Kakudo, Bull. Chem. Soc. Jpn., 37, 940–946 (1964).

    Article  CAS  Google Scholar 

  3. L. L. Zamora, J. M. Calatayud, J. M. Caiatayud, and Y. F. Mestre, Anal. Chim. Acta, 394, 159–163 (1999).

    Article  Google Scholar 

  4. F. Pertlik, Monatsh. Chem., 121, 129–139 (1990).

    Article  CAS  Google Scholar 

  5. K. W. J. Street and G. H. Schenk, J. Pharm. Sci., 70, 641–645 (1981).

    Article  CAS  Google Scholar 

  6. M. I. Walash, A. M. E. Brashy, and M. A. Sultan, Mikrochim. Acta, 113, 113–124 (1994).

    Article  CAS  Google Scholar 

  7. A. R. Medina, M. L. F. Cordova, and A. M. Diaz, Anal. Chim. Acta, 394, 149–158 (1999).

    Article  Google Scholar 

  8. M. J. M. Takac and D. V. Topic, Europ. J. Pharm. Sci., 17, S47–S57 (2002).

    Article  Google Scholar 

  9. X. Xu and K. S. Pang, J. Pharmacokinetics and Pharmacodynamics, 17(6), 645–671 (1989).

    Article  CAS  Google Scholar 

  10. D. H. Litina, Current Med. Chem., 7, 375–388 (2000).

    Google Scholar 

  11. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford Univ Press, Oxford (1989).

    Google Scholar 

  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian Inc., Pittsburgh PA (1998).

  13. M. Kato, K. Nihikawa, M. Untani, M. Mlyazaki, M. Takcmura, and J. Bmehem, Gaussian 98, Revision A.7, 107, 242–247 (1990).

    CAS  Google Scholar 

  14. M. Braäuer, M. Kunert, E. Dinjus, M. Klußmann, M. Doring, H. Corls, and E. Anders, J. Mol. Struct. (Theochem.), 505, 298–301 (2000).

    Article  Google Scholar 

  15. C. Lu, Y. L. Chung, and K. F. Chang, J. Hazardous Materials B, 138, 304–310 (2006).

    Article  CAS  Google Scholar 

  16. V. G. Maltarollo, P. H. Mello, and K. M. Honorio, J. Molecular Modeling, 16, No. 4, 799–804.

  17. A. M. Teixeira, J. Walkimar, and M. Carneiro, J. Molecular Structure: Theochem., Issues 1–3, 30 May, 335, 255–266 (1995).

    Article  Google Scholar 

  18. K. Nakatani, T. Matsuno, K. Adachi, S. Hagihara, and I. Saito, J. Am. Chem. Soc., 20, 123, No. 24, 695–702 (2001).

    Google Scholar 

  19. G. Balogh, E. Csizer, G. F. Gyorgy, Z. Halmos, B. Herenyi, P. Horvath, A. Lauko, and G. Sandor, (1995) Pharmaceutical Research, 12, 2295–2298 (2000).

    Article  Google Scholar 

  20. J. V. Aukunuru, U. B. Kompella, and G. V. Betageri, J. Liquid Chromatography & Related Technologies, 23, No. 4, 565–578 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Honarparvar.

Additional information

Original Russian Text Copyright © 2012 by E. Mousavinezhad Sarasia, M. E. S. Soliman, B. Honarparvar

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 3, pp. 580–587, May–June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavinezhad Sarasia, E., Soliman, M.E.S. & Honarparvar, B. Theoretical study on the molecular electronic properties of salicylic acid derivatives as anti- inflammatory drugs. J Struct Chem 53, 574–581 (2012). https://doi.org/10.1134/S0022476612030237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612030237

Keywords

Navigation