Skip to main content
Log in

Bond energies (Pt-NH3, Pt-Cl) and proton affinity of cisplatin: A density functional theory approach

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The energies of the Pt-NH3 and Pt-Cl bonds of cisplatin are calculated by means of a density functional theory method with the B3LYP functional and various basis sets. The calculated bond energies of 37.38 kcal·mol−1 and 64.35 kcal·mol−1 for Pt-NH3 and Pt-Cl, respectively, agree well with the experimental values (37.28 kcal·mol−1 and 69.31 kcal·mol−1 respectively) derived from enthalpy changes. The proton and lithium ion affinities of cisplatin are also obtained with the B3LYP functional. Structural characterizations for the protonated and lithiated cisplatin complexes are given. Protonation and lithiation alter the geometric parameters, and the gas-phase proton affinity (198.71 kcal·mol−1) is much higher than the lithium ion affinity (70.32 kcal·mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Lopes, W. R. Rocha, H. F. Dos Santos, and W. B. De Almeida, J. Chem. Phys., 128, No. 16, 165103–165116 (2008).

    Article  Google Scholar 

  2. P. D. Dans, A. Crespo, D. A. Estrin, and E. L. Coitiño, J. Chem. Theory. Comput., 4, No. 5, 740–750 (2008).

    Article  CAS  Google Scholar 

  3. V. J. Da Silva, L. A. S. Costa, and H. F. Dos Santos, Int. J. Quant. Chem., 108, No. 2, 401–414 (2008).

    Article  Google Scholar 

  4. A. M. Amado, S. M. Fiuza, P. M. Marques, and L. A. E. Batista de Carvalho, J. Chem. Phys., 127, No. 18, 185104–185113 (2007).

    Article  Google Scholar 

  5. J. Paulik and F. Paulik, in: Comprehensive Analytical Chemistry, Elsevier Scientific (1981), pp. 45–47.

  6. M. A. Richard and R. J. Pancirov, J. Therm. Anal., 32, No. 3, 825–834 (1987).

    Article  CAS  Google Scholar 

  7. G. Al-Takhin, H. A. Skinner, and A. A. Zaki, J. Chem. Soc. Dalton., 371–378 (1984)

  8. G. Al-Takhin, H. A. Skinner, and A. A. Zaki, J. Chem. Soc. Dalton., 2323–2328 (1983).

  9. C. T. Mortimer, Rev. Inorg. Chem., 6, 233–257 (1984).

    CAS  Google Scholar 

  10. M. M. Kappes and R. H. Staley, J. Am. Chem. Soc., 104, No. 7, 1813–1819 (1982).

    Article  CAS  Google Scholar 

  11. P. N. V. Pavankumar, P. Seetharamulv, S. Yao, J. D. Sake, D. G. Reddy, and F. H. Hausheer, J. Comput. Chem., 20, No. 3, 365–382 (1999).

    Article  CAS  Google Scholar 

  12. P. Carloni, W. Andreoni, J. Hutter, A. Curioni, P. Giannozzi, and M. Parrinello, Chem. Phys. Lett., 234, Nos. 1–3, 50–56 (1995).

    Article  CAS  Google Scholar 

  13. H. Basch, M. Krauss, and W. J. Stevens, Inorg. Chem., 24, No. 21, 3313–3317 (1985).

    Article  CAS  Google Scholar 

  14. T. Fujii, Anal. Chem., 64, No. 7, 775–778 (1992).

    Article  CAS  Google Scholar 

  15. T. Fujii, Chem. Phys. Lett., 191, Nos. 1/2, 162–168 (1992).

    Article  CAS  Google Scholar 

  16. T. Fujii and K. Syouji, J. Appl. Phys., 74, No. 5, 3009–3012 (1993).

    Article  CAS  Google Scholar 

  17. T. Fujii and K. Syouji, J. Phys. Chem., 97,No. 44, 11380–11384 (1993).

    Article  CAS  Google Scholar 

  18. T. Fujii, S. Arulmozhiraja, M. Nakamura, and Y. Shiokawa, Chem. Phys. Lett., 425, Nos. 1–3, 134–137 (2006).

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT (2004).

  20. R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland, GaussView 3.0.9, Semichem, Inc., Shawnee Mission KS (2003).

  21. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, University Press, Oxford, UK (1989).

    Google Scholar 

  22. A. D. Becke, Phys. Rev. A., 38, No. 6, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  23. A. D. Becke, J. Chem. Phys., 98, No. 7, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  24. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  25. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, No. 2, 724–728 (1971).

    Article  CAS  Google Scholar 

  26. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 56, No. 5, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  27. T. H. Dunning Jr. and P. J. Hay, Modern Theoretical Chemistry, Plenum, New York, USA (1976).

    Google Scholar 

  28. U. Weding, M. Dolg, H. Stoll, and H. Preuss, Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry (1986).

  29. G. H. W. Milburn and M. R. Truter, J. Chem. Soc. A, 11, 1609–1616 (1966).

    Article  Google Scholar 

  30. S. Takahashi, Y. Kitahara, M. Nakamura, Y. Shiokawa, and T. Fujii, Phys. Chem. Chem. Phys., 12, No. 15, 3910–3913 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fujii.

Additional information

Original Russian Text Copyright © 2012 by M. Juhász, S. Takahashi, S. Arulmozhiraja, T. Fujii

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 3, pp. 443–448, May–June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhász, M., Takahashi, S., Arulmozhiraja, S. et al. Bond energies (Pt-NH3, Pt-Cl) and proton affinity of cisplatin: A density functional theory approach. J Struct Chem 53, 436–442 (2012). https://doi.org/10.1134/S0022476612030043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612030043

Keywords

Navigation