Skip to main content
Log in

Electrostatic interactions in micellar solutions of sodium n-alkyl sulfates and applicability of the poisson-boltzmann equation for their calculation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

By the example of four even members in a homologous series of sodium n-alkyl sulfates (decyl-, dodecyl-, tetradecyl-, and hexadecyl sulfate) and with the use of the Debye-Hueckel theory of strong electrolytes the parameters are calculated that determine electrostatic interactions in micellar solutions of surfactants. Calculation results for the Gibbs electrostatic energy of micellization are compared to those obtained from one of the approximate solutions of the Poisson-Boltzmann equation and also to the results of its numerical integration for spherical micelles. Applicability conditions of the Debye-Hueckel theory are determined with respect to the micelle concentration and size and the number of carbon atoms in a surfactant molecule. It is shown that the Debye-Hueckel theory in the proposed version enables an efficient and quite accurate calculation of all electrostatic properties of micelles and ionic micellar solutions for surfactants with a number of carbon atoms in a molecule starting from 10 and more and at concentrations up to 0.15 mol/dm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Rusanov, Micellization in Surfactant Solutions [in Russian], Khimiya, St. Petersburg (1992).

    Google Scholar 

  2. V. Sanghrian and K. S. Schmitz, Langmuir., 16, 7566 (2000).

    Article  Google Scholar 

  3. N. A. Smirnova, Usp. Khim., 74, No. 2, 138 (2005).

    Google Scholar 

  4. J. Yang, Current Option in Colloid and Interface Science, 7, 276 (2002).

    Article  CAS  Google Scholar 

  5. A. I. Serdyuk and R. V. Kucher, Micellar Transitions in Surfactant Solutions [in Russian], Naukova dumka, Kiev (1987).

    Google Scholar 

  6. G. V. Hartland, F. Grieser and L. R. Whiete, J. Chem. Soc. Faraday Trans. I, 83, 591 (1987).

    Article  CAS  Google Scholar 

  7. E. S. Podchasskaya and O. G. Us’yarov, Kolloid. Zh., 67, No. 2, 206 (2005).

    Google Scholar 

  8. Y. C. Chiu, C. Y. Kuo, and C. W. Wang, J. Dispersion Sci. Technology, 21, 327 (2000).

    Article  CAS  Google Scholar 

  9. S. S. Dukhin, Electric Conductivity and Electrokinetic Properties of Disperse Systems [in Russian], Naukova dumka, Kiev (1975).

    Google Scholar 

  10. O. G. Us’yarov, Kolloid. Zh., 69, No. 1, 95 (2007).

    Google Scholar 

  11. V. A. Andreev, A. Yu. Vlasov, and N. A. Smirnova, Zh. Fiz. Khim., 80, No. 1, 39 (2006).

    Google Scholar 

  12. R. Kubo, Statistical Mechanics, North-Holland (1965).

  13. C. J. Tanfard, J. Phys. Chem., 76, No. 21, 3020 (1972).

    Article  Google Scholar 

  14. F. Bockstahl, E. Pachoud, G. Duplatre, and J. Billard, J. Phys. Chem., 256, 307 (2000).

    CAS  Google Scholar 

  15. E. Mileva, J. Coloud a. Interface Sci., 232, 211 (2000).

    Article  CAS  Google Scholar 

  16. C. Thevenot, B. Grassel, G. Bastiat, and W. Binana, Colloid Surf. A. Physicochem. Engin. Aspects, 252, 205 (2005).

    Google Scholar 

  17. D.-H. Kim, S.-G. Oh, and C.-G. Cho, Colloid Polym. Sci., 279, 39 (2001).

    Article  CAS  Google Scholar 

  18. V. Kusnetsov, N. Usol’tseva, V. Zherdev, and V. Bykova, Colloid J., 72, No. 2, 211 (2010).

    Article  Google Scholar 

  19. R. I. Savitskas and I. N. Tsipanis, Akusticheskii Zh., No. 27, 271 (1977).

  20. G. Onori, J. Phys. Chem., 87, 1951 (1987).

    Google Scholar 

  21. A. A. Zaitsev and V. N. Afanasiev, J. Struct. Chem., 48, No. 5, 874–881 (2007).

    Article  CAS  Google Scholar 

  22. J. Frahm, S. Diekmann, and A. Haase, Ber. Bunsenges. Phys. Chem., 84, No. 6, 566 (1980).

    CAS  Google Scholar 

  23. D. E. Dunstan and L. R. Whiete, J. Colloid. Interface Sci., 134, 147 (1990).

    Article  CAS  Google Scholar 

  24. Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects [in Russian], Khimiya, Leningrad (1989).

    Google Scholar 

  25. R. Robinson and R. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959).

    Google Scholar 

  26. A. Schiloach and D. Blankschtain, Langmuir, 14, 1618 (1998).

    Article  Google Scholar 

  27. H. Ohshima, T. W. Healy, and L. R. White, J. Colloid. Interface Sci., 90, 17 (1982).

    Article  CAS  Google Scholar 

  28. L. P. Panicheva and Z. M. Markina, Kolloid. Zh., 43, No. 4, 671 (1981).

    CAS  Google Scholar 

  29. V. S. Kusnetsov, N. V. Usol’tseva, and A. P. Blinov, Russ. J. Phys. Chem., A, 82, No. 13, 2346 (2008).

    Article  Google Scholar 

  30. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Macmillan (1939).

  31. M. M. Shakhparonov, Introduction to the Molecular Theory of Solutions [in Russian], GITTL, Moscow (1966).

    Google Scholar 

  32. L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], V. 1, Nauka, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Usol’tseva.

Additional information

Original Russian Text Copyright © 2012 by V. S. Kuznetsov, N. V. Usol’tseva, and V. V. Bykova

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 53, No. 1, pp. 87–97, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, V.S., Usol’tseva, N.V. & Bykova, V.V. Electrostatic interactions in micellar solutions of sodium n-alkyl sulfates and applicability of the poisson-boltzmann equation for their calculation. J Struct Chem 53, 82–92 (2012). https://doi.org/10.1134/S0022476612010106

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612010106

Keywords

Navigation