Skip to main content
Log in

Ab initio study of scandium fluoride molecules: ScF, ScF2, AND ScF3

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Equilibrium geometric parameters, normal mode frequencies and intensities in IR spectra, atomization enthalpy, and relative energies of low-lying electronic states of scandium fluoride molecules (ScF, ScF2, and ScF3) are calculated by the coupled-cluster method (CCSD(T)) in triple-, quadruple, and quintuple-zeta basis sets with the subsequent extrapolation of the calculation results to the complete basis set limit. The ScF molecule is also studied by the CCSDT technique. The error in the approximate calculation of triple excitations in the CCSD(T) method does not exceed 0.002 Å for the equilibrium internuclear distance R e, 4 cm−1 for the vibrational frequency, and 0.2 kcal/mol for the dissociation energy of the molecule. In the ground electronic state \(\tilde X^2 \) A 1(C 2ν ) of ScF2 molecules, R e(Sc-F) = 1.827 Å and αe(F-Sc-F) = 124.2°; the energy barrier to bending (linearization) h = E min(D g8h ) − E min(C) = 1652 cm−1. The relative energies of Ã2Δ g and \(\tilde B^2 \)Π g electronic states are 3522 cm−1 and 14633 cm−1 respectively. The bond distance in the ScF3 molecule (\(\tilde X^1 \) A1, D 3h ) is refined: R e(Sc-F) = 1.842 Å. The atomization enthalpies Δat H 0298 of ScF k molecules are 139.9 kcal/mol, 289.0 kcal/mol, and 444.8 kcal/mol for k = 1, 2, 3 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hargittai, Chem. Rev., 100, No. 6, 2233 (2000).

    Article  CAS  Google Scholar 

  2. J. F. Harrison, Chem. Rev., 100, No. 2, 679 (2000).

    Article  CAS  Google Scholar 

  3. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).

    Google Scholar 

  4. E. A. Shenyavskaya, A. J. Ross, A. Topouzkhanian, and G. Wannous, J. Mol. Spectroscop., 162, No. 2, 327 (1993).

    Article  CAS  Google Scholar 

  5. E. A. Shenyavskaya, J. Vergeoe, A. Topouzkhanian, et al., J. Mol. Spectroscop., 164, No. 1, 129 (1994).

    Article  CAS  Google Scholar 

  6. B. Simard, M. Vasseur, and P. A. Hackett, Chem. Phys. Lett., 176, Nos. 3/4, 303 (1991).

    Article  CAS  Google Scholar 

  7. D. L. Hildenbrand and K. H. Lau, J. Chem. Phys., 102, No. 9, 3769 (1995).

    Article  CAS  Google Scholar 

  8. J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Chem. Soc., Chem. Commun. D, 24, No. 11, 1452 (1969).

    Article  Google Scholar 

  9. X. Wang and L. Andrews, J. Phys. Chem. A, 114, No. 1, 2293 (2010).

    Article  CAS  Google Scholar 

  10. J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Less-Common Met., 39, No. 2, 309 (1975).

    Article  CAS  Google Scholar 

  11. E. Z. Zasorin, A. A. Ivanov, L. I. Ermolaeva, and V. P. Spiridonov, Zh. Fiz. Khim., 63, No. 3, 669 (1989).

    CAS  Google Scholar 

  12. A. Chrissanthopoulos and G. Maroulis, J. Phys. B: At. Mol. Opt. Phys., 34, No. 1, 121 (2001).

    Article  CAS  Google Scholar 

  13. R. Bast and P. Schwerdtfeger, J. Chem. Phys., 119, No. 12, 5988 (2003).

    Article  CAS  Google Scholar 

  14. S. G. Wang and W. H. E. Schwarz, J. Chem. Phys., 109, No. 17, 7252 (1998).

    Article  CAS  Google Scholar 

  15. V. G. Solomonik, J. F. Stanton, and J. E. Boggs, J. Chem Phys., 122, No. 9, 094322 (2005).

    Article  Google Scholar 

  16. H.-J. Werner, P. J. Knowles, R. Lindhm et al., MOLPRO, Version 2009.1, A Package of Ab Initio Programs; http://www.molpro.net.

  17. J. F. Stanton, J. Gauss, M. E. Harding, et al., CFOUR, A Quantum Chemical Program Package; http://www.cfour.de.

  18. M. Kállay, MRCC, A String-Based Quantum Chemical Program Suite

  19. M. Kállay and P. R. Surján, J. Chem. Phys., 115, No. 7, 2945 (2001); http://www.mrcc.hu.

    Article  Google Scholar 

  20. R. J. Bartlett, Ann. Rev. Phys. Chem., 32, 359 (1981).

    Article  CAS  Google Scholar 

  21. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 76, No. 4, 1910 (1982).

    Article  CAS  Google Scholar 

  22. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett., 157, 479 (1989).

    Article  CAS  Google Scholar 

  23. R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys. Lett., 165, No. 6, 513 (1990).

    Article  CAS  Google Scholar 

  24. M. Nooijen and R. J. Bartlett, J. Chem. Phys., 102, No. 9, 3629 (1996).

    Article  Google Scholar 

  25. W. Klopper, J. Comp. Chem., 18, No. 1, 20 (1997).

    Article  Google Scholar 

  26. M. Douglas, N. M. Kroll, Ann. Phys. (N.Y.), 82, No. 1, 89 (1974).

    Article  CAS  Google Scholar 

  27. N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 123, No. 6, 064107 (2005).

    Article  Google Scholar 

  28. T. H. Dunning, J. Chem. Phys., 90, No. 2, 1007 (1989).

    Article  CAS  Google Scholar 

  29. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys., 96, No. 9, 6796 (1992).

    Article  CAS  Google Scholar 

  30. D. Feller, J. Chem. Phys., 96, No. 8, 6104 (1992).

    Article  CAS  Google Scholar 

  31. D. Feller, J. Chem. Phys., 98, No. 9, 7059 (1993).

    Article  CAS  Google Scholar 

  32. T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys., 106, No. 23, 9639 (1997).

    Article  CAS  Google Scholar 

  33. T. R. Furlani and H. F. King, J. Chem. Phys., 82, No. 12, 5577 (1985).

    Article  CAS  Google Scholar 

  34. H. F. King and T. R. Furlani, J. Comput. Chem., 9, No. 7, 771 (1988).

    Article  CAS  Google Scholar 

  35. D. G. Fedorov and M. S. Gordon, J. Chem. Phys., 112, No. 13, 5611 (2000).

    Article  CAS  Google Scholar 

  36. D. G. Fedorov and J. P. Finley, Phys. Rev. A, 64, No. 4, 042502 (2001).

    Article  Google Scholar 

  37. V. G. Solomonik, Ab Initio Studies of Force Fields, Vibrational Spectra, and Structures of Inorganic Molecules and Ions [in Russian], Diss. … Doctor of Chem. Sc., MGU, Moscow (1993).

    Google Scholar 

  38. V. G. Solomonik, J. F. Stanton, and J. E. Boggs, J. Chem. Phys., 128, No. 24, 244104 (2008).

    Article  Google Scholar 

  39. Yu. Ralchenko, A. E. Kramida, and J. Reader, 40 ASD Teamm 40 Atomic Spectra Database, Version 3.1.5 (2008); http://physics.40.gov/asd3.

  40. C. Blondel, P. Cacciani, C. Delsart, and R. Trainham, Phys. Rev. A, 40, No. 7, 3698 (1989).

    Article  CAS  Google Scholar 

  41. NIST-JANAF Thermochemical Tables, Fourth Edition. Part I, Monograph 9 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Solomonik.

Additional information

Original Russian Text Copyright © 2012 by V. G. Solomonik and A. A. Mukhanov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 53, No. 1, pp. 34–40, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomonik, V.G., Mukhanov, A.A. Ab initio study of scandium fluoride molecules: ScF, ScF2, AND ScF3 . J Struct Chem 53, 28–34 (2012). https://doi.org/10.1134/S0022476612010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612010039

Keywords

Navigation