Skip to main content
Log in

The influence of magnetic ordering on the electronic energy structure of CuFeS2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The modified LAPW+lo method with Wien2k software package was used to calculate the electronic energy structure of CuFeS2 as a component of chalcopyrite. CuFeS2 was found to be a conductor in the absence of antiferromagnetic ordering. Antiferromagnetic ordering in (001) layers leads to appearance of an energy gap and transforms CuFeS2 into a semiconductor. In the GGA+U approximation, E g ≈ 0.75 eV was achieved for U = 6 eV, which is close to experimental value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Loseva, S. G. Ovchinnikov, and G. A. Petrakovsky, Metal-Insulator Transition in 3-d Metal Sulfides [in Russin], Nauka, Novosibirsk (1988).

    Google Scholar 

  2. G. D. Pitt and M. K. R. Vyas, Sol. St. Commun., 15, No. 5, 899–902 (1974).

    Article  CAS  Google Scholar 

  3. T. Teramishi, K. Sato, and K. Kondo, J. Phys. Soc. Jpn., 36, 1618 (1974).

    Article  Google Scholar 

  4. T. Teramishi and K. Sato, J. Phys. Paris, Colloq., 36, 149 (1975).

    Google Scholar 

  5. T. Oguchi, K. Sato, and T. Teramishi, J. Phys. Soc. Jpn., 48, 123 (1980).

    Article  CAS  Google Scholar 

  6. A. V. Novoselova and V. B. Lazarev (eds.), in: Physicochmical Features of Semiconductor Substances. A Handbook [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  7. J. A. Wilson, Adv. Phys., 21,No. 89, 143–198 (1972).

    Article  CAS  Google Scholar 

  8. D. Raj, K. Chandra, and S. P. Puri, J. Phys. Soc. Jpn., 24, 39 (1968).

    Article  CAS  Google Scholar 

  9. I. Nakai, Y. Sugitani, K. Nagashima, and Y. Niwa, J. Inorg. Nucl. Chem., 40, 780 (1978).

    Article  Google Scholar 

  10. G. Donnay, I. M. Corliss, J. D. H. Donnay, et al., Phys. Rev., 112, 1917 (1958).

    Article  CAS  Google Scholar 

  11. J. A. Tossel, D. S. Urch, D. J. Vaughan, and G. Wiech, J. Chem. Phys., 77,No. 1, 77–82 (1982).

    Article  Google Scholar 

  12. J. Petiau, Ph. Sainctavit, and G. Calas, Materials Science, Engineering B, 237–249 (1988).

  13. Ph. Sainctavit, J. Petiau, A. M. Flank, et al., Physica B, 158, 623/624 (1989).

    Google Scholar 

  14. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria, Techn. Universität Wien, Karlheinz Schwarz (2001), ISBN 3-9501031-1-2.

  15. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, et al., Phys. Rev. B, 48, 16929 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lavrentyev.

Additional information

Original Russian Text Copyright © 2011 by A. A. Lavrentyev, B. V. Gabrelian, P. N. Shkumat, B. B. Kulagin, and I. Ya. Nikiforov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 52, Supplement, pp. S65–S68, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrentyev, A.A., Gabrelian, B.V., Shkumat, P.N. et al. The influence of magnetic ordering on the electronic energy structure of CuFeS2 . J Struct Chem 52 (Suppl 1), 61–64 (2011). https://doi.org/10.1134/S0022476611070080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611070080

Keywords

Navigation