Skip to main content
Log in

Thermodynamic perturbation theory of simple liquids. A hierarchy of equations for expansion coefficients

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The properties of an expansion of the statistical sum of a simple liquid with respect to the potential in thermodynamic perturbation theory are analyzed. The coefficients of this expansion are determined by the unperturbed potential, depend on temperature and density, and can be calculated by means of mathematical modeling. It is shown here that the derivatives of these coefficients with respect to temperature and density are expressed through the higher expansion coefficient (these relations are usually called a hierarchy of equations). These coefficients determine the expansion of the Helmholtz free energy and RDF with respect to the perturbation potential. The thermodynamic characteristics of the system (entropy, internal energy, pressure) are expressed through both the differential relations for the Helmholtz free energy and the integral expressions containing RDF. It is found that the hierarchy of equations obtained in this work makes these different methods equivalent. This is important for the application of thermodynamic perturbation theory because it becomes unnecessary to model any other equilibrium properties of the system apart from the expansion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, Physics of Simple Liquids, North Holland Amsterdam (1968).

  2. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 30, No. 12, 5237–5247 (1971).

    Article  Google Scholar 

  3. H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev A, 4, No. 4, 1597–1607 (1971).

    Article  Google Scholar 

  4. L. Verlet and J.-J. Weis, Phys. Rev. A, 5, No. 2, 939–952 (1972).

    Article  Google Scholar 

  5. F. H. Ree, J. Chem. Phys., 64, No. 11, 4601–4605 (1976).

    Article  CAS  Google Scholar 

  6. M. Ross, J. Chem. Phys., 71, No. 4, 1567–1571 (1979).

    Article  CAS  Google Scholar 

  7. F. Lado, Mol. Phys., 52, No. 4, 871–876 (1984).

    Article  CAS  Google Scholar 

  8. H. S. Kang, S. C. Lee, and T. Ree, J. Chem. Phys., 82, No. 1, 415–423 (1985).

    Article  Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], P. 1. 5th ed., Fizmatlit, Moscow (2005).

    Google Scholar 

  10. Yu. T. Pavlyukhin, J. Struct. Chem., 50, No. 3, 446–455 (2009).

    Article  CAS  Google Scholar 

  11. J. A. Barker and D. Henderson, Rev. Mod. Phys., 48, No. 4, 587–673 (1976).

    Article  CAS  Google Scholar 

  12. P. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    Google Scholar 

  13. J. A. Barker and D. Henderson, J. Chem. Phys., 47, No. 8, 2856–2861 (1967).

    Article  CAS  Google Scholar 

  14. Yu. T. Pavlyukhin, J. Struct. Chem., 51, No. 1, 60–68 (2010).

    Article  CAS  Google Scholar 

  15. Yu. T. Pavlyukhin, J. Struct. Chem., 47,Suppl., S173–S190 (2006).

    Article  CAS  Google Scholar 

  16. B. J. Alder, D. A. Young, and M. A. Mark, J. Chem. Phys., 56, No. 6, 3013–3029 (1971).

    Article  Google Scholar 

  17. W. R. Smith, D. Henderson, and J. A. Barker, J. Chem. Phys., 55, No. 8, 4027–4033 (1971).

    Article  CAS  Google Scholar 

  18. Yu. T. Pavlyukhin, J. Struct. Chem., 48, No. 1, 74–80 (2007).

    Article  CAS  Google Scholar 

  19. Yu. T. Pavlyukhin, J. Struct. Chem., 48, No. 6, 1073–1081 (2007).

    Article  CAS  Google Scholar 

  20. V. P. Leonov and A. N. Shiryaev, Teoriya Veroyatnosti i Primen., 4, No. 3, 342–355 (1959).

    Google Scholar 

  21. Yu. V. Prokhorov and Yu. A. Rozanov, Probability Theory: Main Conceptions, Limiting Theorems, Random Processes [in Russian], Nauka, Moscow (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Pavlyukhin.

Additional information

Original Russian Text Copyright © 2011 by Yu. T. Pavlyukhin

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 52, No. 4, pp. 748–758, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlyukhin, Y.T. Thermodynamic perturbation theory of simple liquids. A hierarchy of equations for expansion coefficients. J Struct Chem 52, 726–736 (2011). https://doi.org/10.1134/S0022476611040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611040123

Keywords

Navigation