Skip to main content
Log in

Structure and properties of Li2Zn2(MoO4)3 crystals activated with copper and chromium ions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Based on the corrected phase diagrams proper growth conditions for Li2Zn2(MoO4)3 crystals are selected. Large crystals (up to 100 mm), both impurity-free and activated by transition metal ions (Cu, Cr), are grown by the low-gradient Czochralski method. By the EPR method the charge state and structural position of copper and chromium ions are determined. The performed studies of luminescent properties show that for impurity-free crystals luminescence with λ = 388 nm with a two-exponential luminescence decay with τ1 = 2 ns and τ2 = 6 ns is observed at room temperature. At 77 K for both impurity-free crystals and those activated with transition metal ions luminescence with λ = 560 nm and the luminescence lifetime τ = 100 ns is observed, the intensity of luminescence with λ = 560 nm depending on the nature and concentration of transition metal ions. Cation vacancies responsible for the charge compensation of impurity transition metal ions are assumed to be also responsible for low-temperature luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Globus, B. Grinyov, and Jong Kying Kim, Inorganic Scintillators for Modern and Traditional Applications, Institute For Single Crystals, Kharkiv (Ukraine) (2005).

    Google Scholar 

  2. M. Kobayashi, M. Ishii, and C. L. Melcher, Nucl. Instr. Meth., A335, 509–512 (1993).

    Google Scholar 

  3. C. L. Melcher and J. S. Schweitzer, IEEE Trans. Nucl. Sci., NS39, 502–505 (1992).

    Article  Google Scholar 

  4. C. Dujardin, C. Pedrini, D. Boutet, et al., Proc. Intern. Conf. “SCINT 95”, P. Dorenbos and C. W. E. van Eijk (eds.), Delft, Netherlands (1995), p. 36.

  5. C. W. E. van Eijk, Nucl. Instr. and Meth., A392, 285–290 (1997).

    Google Scholar 

  6. D. Pauwels, N. Lemasson, B. Viana, et al., Inorganic Scintillators and Their Applications, Proc. Intern. Conf. “SCINT 99”, V. Mikhailin (ed.), Moscow (1999), pp. 511–516.

  7. F. T. Avignone III, G. S. King III, and Yu. G. Zdesenko, New J. Phys., 7, 1–6 (2005).

    Article  Google Scholar 

  8. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys., A729, 337–746 (2003).

    CAS  Google Scholar 

  9. E. V. D. Van Loef, P. Dorenbos, C. van Eijk, et al., Appl. Phys. Let., 79, No. 10, 1573–1575 (2001).

    Article  Google Scholar 

  10. M. Kapusta, M. Balcerzyk, M. Moszynski, and J. Pawelke, Nucl. Instr. Meth., A42, 610 (1999).

    Google Scholar 

  11. M. Kobayashi, M. Ishii, K. Harada, et al., Nucl. Instr. Meth., A373, 333 (1996).

    Google Scholar 

  12. J. B. Reed, B. S. Hopkins, L. F. Audrieth, et al., Inorg. Synth., 1, 28 (1936).

    Article  Google Scholar 

  13. K. S. Shah, J. Glodo, M. Klugerman, et al., Nucl. Instr. Meth., A505, 76 (2003).

    Google Scholar 

  14. R. Zhu, Inorganic Scintillators and Their Applications. Proc. Intern. Conf. “SCIN. 97”, Zhiwen et al. (eds.), Shanghai, China (1997), pp. 73–90.

  15. V. B. Mikhailik, H. Kraus, D. Wahl, and M. S. Mykhaylyk, Phys. Stat. Sol., B242,17 (2005).

    Google Scholar 

  16. Yu. G. Zdesenko, B. N. Kropivyanskii, V. N. Kuts, et al., Instrum. Exp. Tech., 39, 362–366 (1996).

    Google Scholar 

  17. L. Xue, Y. Wang, P. Lv, et al., Cryst. Growth Design., 9, 914–920 (2009).

    Article  CAS  Google Scholar 

  18. L. Xue, Z. Lin, F. Huang, and J. Liang, Chinese J. Struct. Chem., 26, No. 10, 1208–1210 (2007).

    CAS  Google Scholar 

  19. V. A. Efremov and V. K. Trunov, Z. Neorg. Khim., 20, 2200–2203 (1975).

    CAS  Google Scholar 

  20. V. A. Efremov, Yu. G. Petrosyan, and V. M. Zhukovsky, Z. Neorg. Khim., 22, 175 (1977).

    CAS  Google Scholar 

  21. S. F. Solodovnikov, Z. A. Solodovnikova, E. S. Zolotova, et al., J. Solid State Chem., 182, 1935–1943 (2009).

    Article  CAS  Google Scholar 

  22. A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, Proceed. of the Asia Pacific Society for Advanced Materials APSAM-92, Shanghai (1992), p. 164

  23. V. A. Nadolinny, N. V. Chernei, A. V. Sinitsyn, et al., J. Struct. Chem., 49, No. 5, 859–864 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Nadolinny.

Additional information

Original Russian Text Copyright © 2011 by V. A. Nadolinny, A. A. Pavlyuk, S. F. Solodovnikov, Z. A. Solodovnikova, E. S. Zolotova, N. A. Nebogatikova, V. F. Plyusnin, and A. A. Ryadun

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 52, No. 4, pp. 730–734, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadolinny, V.A., Pavlyuk, A.A., Solodovnikov, S.F. et al. Structure and properties of Li2Zn2(MoO4)3 crystals activated with copper and chromium ions. J Struct Chem 52, 708–712 (2011). https://doi.org/10.1134/S0022476611040093

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611040093

Keywords

Navigation